Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Footprinting protein–DNA complexes using the hydroxyl radical

Abstract

Hydroxyl radical footprinting has been widely used for studying the structure of DNA and DNA–protein complexes. The high reactivity and lack of base specificity of the hydroxyl radical makes it an excellent probe for high-resolution footprinting of DNA–protein complexes; this technique can provide structural detail that is not achievable using DNase I footprinting. Hydroxyl radical footprinting experiments can be carried out using readily available and inexpensive reagents and lab equipment. This method involves using the hydroxyl radical to cleave a nucleic acid molecule that is bound to a protein, followed by separating the cleavage products on a denaturing electrophoresis gel to identify the protein-binding sites on the nucleic acid molecule. We describe a protocol for hydroxyl radical footprinting of DNA–protein complexes, along with a troubleshooting guide, that allows researchers to obtain efficient cleavage of DNA in the presence and absence of proteins. This protocol can be completed in 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correspondence of the structure of a DNA–protein complex (right) and the hydroxyl radical footprint as imaged by an electrophoresis gel (left).
Figure 2: Hydroxyl radical footprint of the CUP2 protein bound to a 154-bp restriction fragment.
Figure 3: Details of the chemistry of the hydroxyl radical with the deoxyribose backbone of DNA.
Figure 4: Products of hydroxyl radical cleavage that result from the abstraction of a 4′-hydrogen atom from the deoxyribose sugar.

Similar content being viewed by others

References

  1. Tullius, T.D. Physical studies of protein-DNA complexes by footprinting. Annu. Rev. Biophys. Biophys. Chem. 18, 213–237 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Hampshire, A.J., Rusling, D.A., Broughton-Head, V.J. & Fox, K.R. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods 42, 128–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Adilakshmi, T., Lease, R.A. & Woodson, S.A. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res. 34, e64 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Urbach, A.R. & Waring, M.J. Visualising DNA: footprinting and 1-2D gels. Mol. BioSyst. 1, 287–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Galas, D.J. & Schmitz, A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Meth. Enzymol. 130, 132–181 (1986).

    Article  CAS  Google Scholar 

  7. Drew, H.R. & Travers, A.A. DNA structural variations in the E. coli tyrT promoter. Cell 37, 491–502 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Sawadogo, M. & Roeder, R.G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165–175 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Tullius, T.D., Dombroski, B.A., Churchill, M.E. & Kam, L. Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Meth. Enzymol. 155, 537–558 (1987).

    Article  CAS  Google Scholar 

  10. Tullius, T.D. & Dombroski, B.A. Hydroxyl radical 'footprinting': high-resolution information about DNA-protein contacts and application to Lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA 83, 5469–5473 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tullius, T.D. DNA footprinting with hydroxyl radical. Nature 332, 663–664 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Pogozelski, W.K. & Tullius, T.D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 98, 1089–1108 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Price, M.A. & Tullius, T.D. Using hydroxyl radical to probe DNA structure. Meth. Enzymol. 212, 194–219 (1992).

    Article  CAS  Google Scholar 

  14. Price, M.A. & Tullius, T.D. How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry 32, 127–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Ganunis, R.M., Guo, H. & Tullius, T.D. Effect of the crystallizing agent 2-methyl-2,4-pentanediol on the structure of adenine tract DNA in solution. Biochemistry 35, 13729–13732 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Churchill, M.E., Tullius, T.D., Kallenbach, N.R. & Seeman, N.C. Holliday recombination intermediate is twofold symmetric. Proc. Natl. Acad. Sci. USA 85, 4653–4656 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tullius, T.D. & Greenbaum, J.A. Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol. 9, 127–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Churchill, M.E., Hayes, J.J. & Tullius, T.D. Detection of drug binding sites by hydroxyl radical footprinting. Relationship of distamycin binding to nucleosome positions on the 5S RNA gene of Xenopus. Biochemistry 29, 6043–6050 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Mah, S.C., Townsend, C.A. & Tullius, T.D. Hydroxyl radical footprinting of calicheamicin. Relationship of DNA binding to cleavage. Biochemistry 33, 614–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Tullius, T.D. & Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 230, 679–681 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Udenfriend, S., Clark, C.T., Axelrod, J. & Brodie, B.B. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. Biol. Chem. 208, 731–740 (1954).

    CAS  PubMed  Google Scholar 

  22. Fenton, H.J.H. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. 65, 899–910 (1894).

    Article  CAS  Google Scholar 

  23. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res. 34, e48 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shcherbakova, I. & Brenowitz, M. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat. Protoc. 3, 288–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hayes, J.J., Kam, L. & Tullius, T.D. Footprinting protein-DNA complexes with gamma-rays. Meth. Enzymol. 186, 545–549 (1990).

    Article  CAS  Google Scholar 

  26. Ottinger, L.M. & Tullius, T.D. High-resolution in vivo footprinting of a protein-DNA complex using γ-radiation. J. Am. Chem. Soc. 122, 5901–5902 (2000).

    Article  CAS  Google Scholar 

  27. Greenbaum, J.A., Pang, B. & Tullius, T.D. Construction of a genome-scale structural map at single-nucleotide resolution. Genome Res. 17, 947–953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenbaum, J.A., Parker, S.C. & Tullius, T.D. Detection of DNA structural motifs in functional genomic elements. Genome Res. 17, 940–946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steitz, T.A. Structural studies of protein-nucleic acid interactions: the sources of sequence specific binding. Q. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Pabo, C.O. & Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Carey, J. Gel retardation. Meth. Enzymol. 208, 103–117 (1991).

    Article  CAS  Google Scholar 

  32. Lane, D., Prentki, P. & Chandler, M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol. Rev. 56, 509–528 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fried, M.G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10, 366–376 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Garner, M.M. & Revzin, A. The use of gel electrophoresis to detect and study nucleic acid-protein interactions. Trends Biochem. Sci. 11, 395–396 (1986).

    Article  CAS  Google Scholar 

  35. Fried, M.G. & Crothers, D.M. Equilibria and kinetics of Lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hellman, L.M. & Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woodbury, C.P. Jr. & von Hippel, P.H. On the determination of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry 22, 4730–4737 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Nirenberg, M. & Leder, P. RNA codewords of protein synthesis. Science 145, 1399–1407 (1964).

    Article  CAS  PubMed  Google Scholar 

  39. Jones, O.W. & Berg, P. Studies on the binding of RNA polymerase to polynucleotides. J. Mol. Biol. 22, 199–209 (1966).

    Article  CAS  PubMed  Google Scholar 

  40. Yarus, M. & Berg, P. Recognition of tRNA by aminoacyl tRNA synthetases. J. Mol. Biol. 28, 479–490 (1967).

    Article  CAS  PubMed  Google Scholar 

  41. Vrana, K.E., Churchill, M.E., Tullius, T.D. & Brown, D.D. Mapping functional regions of transcription factor TFIIIA. Mol. Cell. Biol. 8, 1684–1696 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayes, J.J., Tullius, T.D. & Wolffe, A.P. The structure of DNA in a nucleosome. Proc. Natl. Acad. Sci. USA 87, 7405–7409 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dixon, W.J., Inouye, C., Karin, M. & Tullius, T.D. CUP2 binds in a bipartite manner to upstream activation sequence c in the promoter of the yeast copper metallothionein gene. J. Biol. Inorg. Chem. 1, 451–459 (1996).

    Article  CAS  Google Scholar 

  44. Jamison McDaniels, C.P., Jensen, L.T., Srinivasan, C., Winge, D.R. & Tullius, T.D. The yeast transcription factor Mac1 binds to DNA in a modular fashion. J. Biol. Chem. 274, 26962–26967 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Bashkin, J.S., Hayes, J.J., Tullius, T.D. & Wolffe, A.P. Structure of DNA in a nucleosome core at high salt concentration and at high temperature. Biochemistry 32, 1895–1898 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Widlund, H.R. et al. Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence. J. Biol. Chem. 274, 31847–31852 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Draganescu, A., Levin, J.R. & Tullius, T.D. Homeodomain proteins: what governs their ability to recognize specific DNA sequences? J. Mol. Biol. 250, 595–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Kimball, A.S., Milman, G. & Tullius, T.D. High-resolution footprints of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1. Mol. Cell. Biol. 9, 2738–2742 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Danford, A.J., Wang, D., Wang, Q., Tullius, T.D. & Lippard, S.J. Platinum anticancer drug damage enforces a particular rotational setting of DNA in nucleosomes. Proc. Natl. Acad. Sci. USA 102, 12311–12316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Draganescu, A. & Tullius, T.D. The DNA binding specificity of engrailed homeodomain. J. Mol. Biol. 276, 529–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Buchman, C., Skroch, P., Dixon, W.J., Tullius, T.D. & Karin, M. A single amino acid change in CUP2 alters its mode of DNA binding. Mol. Cell. Biol. 10, 4778–4787 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kimball, A.S., Kimball, M.L., Jayaram, M. & Tullius, T.D. Chemical probe and missing nucleoside analysis of Flp recombinase bound to the recombination target sequence. Nucleic Acids Res. 23, 3009–3017 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dixon, W.J. et al. Hydroxyl radical footprinting. Meth. Enzymol. 208, 380–413 (1991).

    Article  CAS  Google Scholar 

  54. Lutter, L.C. Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res. 6, 41–56 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maxam, A.M. & Gilbert, W. Sequencing end-labeled DNA with base specific chemical cleavages. Meth. Enzymol. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  56. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Current Protocols in Nucleic Acid Chemistry (ed. Harkins, E.W.) (John Wiley & Sons, Inc., Somerset, New Jersey, 2005).

  58. Vinson, C.R., Sigler, P.B. & McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Dixon, W.J. Determination of the protein-DNA interactions of two transcription activators, the yeast Copper Protein 2 and the human Growth Hormone Factor 1. DNA-binding models for the Copper "Fist" and POU domain. (Dissertation) (The Johns Hopkins University, Baltimore, Maryland, 1992).

    Google Scholar 

  60. Balasubramanian, B., Pogozelski, W.K. & Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA 95, 9738–9743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shadle, S.E. et al. Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of protein-DNA binding constant. Nucleic Acids Res. 25, 850–860 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wendy Dixon for producing the CUP2 footprint shown in Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D Tullius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Tullius, T. Footprinting protein–DNA complexes using the hydroxyl radical. Nat Protoc 3, 1092–1100 (2008). https://doi.org/10.1038/nprot.2008.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.72

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing