Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful tool for the characterization of covalent histone modifications and DNA–histone interactions in vivo. The procedure includes DNA–histone cross-linking in chromatin, shearing DNA into smaller fragments, immunoprecipitation with antibodies against the histone modifications of interest, followed by PCR identification of associated DNA sequences. In this protocol, we describe a simplified and optimized version of ChIP assay by reducing the number of experimental steps and isolation solutions and shortening preparation times. We include a nuclear isolation step before chromatin shearing, which provides a good yield of high-quality DNA resulting in at least 15 μg of DNA from each immunoprecipitated sample (from 0.2 to 0.4 g of starting tissue material) sufficient to test ≥25 genes of interest. This simpler and cost-efficient protocol has been applied for histone-modification studies of various Arabidopsis thaliana tissues and is easy to adapt for other systems as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal steps and duration of chromatin immunoprecipitation protocol.
Figure 2: Histone H3 Lys 27 methylation profiles of Flowering Locus T (FT) nucleosomes in clf mutant background.

Similar content being viewed by others

References

  1. Van Driel, R., Fransz, P.F. & Verschure, P.J. The eukaryotic genome: a system regulated at different hierarchical levels. J. Cell Sci. 15, 4067–4075 (2003).

    Article  Google Scholar 

  2. Fried, M.G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10, 366–376 (1989).

    Article  CAS  Google Scholar 

  3. Hellman, L.M. & Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

    Article  CAS  Google Scholar 

  4. Wood, K.V. Marker proteins for gene expression. Curr. Opin. Biotechnol. 6, 50–58 (1995).

    Article  CAS  Google Scholar 

  5. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  6. Bulyk, L.M. DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430 (2006).

    Article  CAS  Google Scholar 

  7. Bonaldi, T., Regula, J.T. & Imhof, A. The use of mass spectrometry for the analysis of histone modifications. Methods Enzymol. 377, 111–130 (2004).

    Article  CAS  Google Scholar 

  8. Burlingame, A.L., Zhang, X. & Chalkley, R.J. Mass spectrometric analysis of histone posttranslational modifications. Methods 36, 383–394 (2005).

    Article  CAS  Google Scholar 

  9. Wang, M.M. & Reed, R.R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126 (1993).

    Article  CAS  Google Scholar 

  10. Feng, S.Y., Ota, K., Yamada, Y., Sawabu, N. & Ito, T. A yeast one-hybrid system to detect methylation-dependent DNA-protein interactions. Biochem. Biophys. Res. Commun. 313, 922–925 (2004).

    Article  CAS  Google Scholar 

  11. Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214 (1997).

    Article  CAS  Google Scholar 

  12. Orlando, V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104 (2000).

    Article  CAS  Google Scholar 

  13. Kuo, M.H. & Allis, C.D. In vivo cross-linking and immunoprecipitation for studying dynamic Protein: DNA associations in a chromatin environment. Methods 19, 425–433 (1999).

    Article  CAS  Google Scholar 

  14. Huebert, D.J., Kamal, M., O'Donovan, A. & Bernstein, B.E. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40, 365–369 (2006).

    Article  CAS  Google Scholar 

  15. Nelson, J.D., Denisenko, O. & Bomsztyk, K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185 (2006).

    Article  CAS  Google Scholar 

  16. Alvarez-Venegas, R. & Avramova, Z. Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res. 33, 5199–5207 (2005).

    Article  CAS  Google Scholar 

  17. Chaya, D. & Zaret, K.S. Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol. 376, 361–372 (2004).

    Article  CAS  Google Scholar 

  18. Ezhkova, E. & Tansey, W.P. Chromatin immunoprecipitation to study protein-DNA interactions in budding yeast. Methods Mol. Biol. 313, 225–244 (2006).

    CAS  PubMed  Google Scholar 

  19. Sandmann, T., Jakobsen, J.S. & Furlong, EE. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat. Protoc. 1, 2839–2855 (2006).

    Article  CAS  Google Scholar 

  20. Ascenzi, R. & Gantt, J.S. Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma 108, 345–355 (1999).

    Article  CAS  Google Scholar 

  21. Marty, F. Plant vacuoles. Plant Cell 11, 587–600 (1999).

    Article  CAS  Google Scholar 

  22. Reisen, D., Marty, F. & Leborgne-Castel, N. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol. 5, 13 (2005).

    Article  Google Scholar 

  23. Müntz, K. Protein dynamics and proteolysis in plant vacuoles. J. Exp. Botany 58, 2391–2407 (2007).

    Article  Google Scholar 

  24. Jackson, J.P. et al. Dimethylation of histone H3 Lys 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308–315 (2004).

    Article  CAS  Google Scholar 

  25. Bowler, C. et al. Chromatin techniques for plant cells. Plant J. 39, 776–789 (2004).

    Article  CAS  Google Scholar 

  26. Gendrel, A.V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005).

    Article  CAS  Google Scholar 

  27. Gendrel, A.V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R.A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297, 1871–1873 (2002).

    Article  CAS  Google Scholar 

  28. Johnson, M., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. Curr. Biol. 12, 1360–1367 (2002).

    Article  CAS  Google Scholar 

  29. Haring, M. et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Meth. 3, 11 (2007).

    Article  Google Scholar 

  30. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, 1026–1035 (2007).

    CAS  Google Scholar 

  31. Turck, F. et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, e86 (2007).

    Article  Google Scholar 

  32. Alvarez-Venegas, R., Abdallat, A.A., Guo, M., Alfano, J. & Avramova, Z. Epigenetic control of transcription factor at the cross section of two antagonistic pathways. Epigenetics 2, 106–117 (2007).

    Article  Google Scholar 

  33. Saleh, A., Al-Abdallat, A., Ndamukong, I., Alvarez-Venegas, R. & Avramova, Z. The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish “bivalent chromatin marks” at the silent AGAMOUS locus. Nucleic Acids Res. 35, 6290–6296 (2007).

    Article  CAS  Google Scholar 

  34. Saleh, A. et al. The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode divergent biochemical functions. Plant Cell (in press) 10.1105/tpc.107.056614 (2008).

  35. Takada, S. & Goto, K. Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856–2865 (2003).

    Article  CAS  Google Scholar 

  36. Teper-Bamnolkerm, P. & Samach, A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17, 2661–2675 (2005).

    Article  Google Scholar 

  37. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).

    Article  CAS  Google Scholar 

  38. Goodrich, J. et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44–51 (1997).

    Article  CAS  Google Scholar 

  39. Schubert, D., Clarenz, O. & Goodrich, J. Epigenetic control of plant development by Polycomb-group proteins. Curr. Opin. Plant Biol. 8, 553–561 (2005).

    Article  CAS  Google Scholar 

  40. Chanvivattana, Y. et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276 (2004).

    Article  CAS  Google Scholar 

  41. Jack, T. Molecular and genetic mechanisms of floral control. Plant Cell 16, S1–S17 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Malali Gowda for critically reading the manuscript and Dr Justin Goodrich for his gift of clf mutant seeds. This work was partially supported by the NSF grant MCB-0343934 to Z.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelaty Saleh or Zoya Avramova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, A., Alvarez-Venegas, R. & Avramova, Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 3, 1018–1025 (2008). https://doi.org/10.1038/nprot.2008.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.66

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing