Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos

Abstract

Human embryonic stem (hES) cells are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. Most hES cell lines are derived from cryopreserved human embryos that were created during in vitro fertilization (IVF) and are in excess of clinical need. Embryos that are discarded during the IVF procedure because of poor morphology and a low likelihood for generating viable pregnancies or surviving the cryopreservation process are also a viable source of hES cells. In this protocol, we describe how to derive novel hES cells from discarded poor-quality embryos and how to maintain the hES cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical passaging of hES cell colony visualized with stereomicroscope (darkfield).
Figure 2: Collagenase treatment of hES cell colonies visualized with stereomicroscope (darkfield).
Figure 3: Human embryonic stem cell surface marker and oct3/4 expression of a hES cell line derived from a poor-quality embryo.
Figure 4: Histopathology of tumors resulting from in vitro differentiation assay using hES cell lines derived from poor-quality embryos.

Similar content being viewed by others

References

  1. Gardner, D.K. & Schoolcraft, W.B. In Vitro Development of Human Blastocyst. (Parthenon Press, Carnforth, 1999).

    Google Scholar 

  2. Racowsky, C. et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod. Biomed. Online 6, 323–331 (2003).

    Article  PubMed  Google Scholar 

  3. Lerou, P.H. et al. Human embryonic stem cell derivation from poor-quality embryos. Nat. Biotechnol. 26, 212–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mitalipova, M. et al. Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21, 521–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X. et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24, 2669–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Fong, C.Y., Richards, M. & Bongso, A. Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres. Reprod. Biomed. Online 13, 295–300 (2006).

    Article  PubMed  Google Scholar 

  10. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. & Lanza, R. Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. & Lanza, R. Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2, 1963–1972 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Chung, Y. et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2, 113–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Nagy, A. Manipulating the Mouse Embryo 3rd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2003).

    Google Scholar 

  14. Boiani, M., Eckardt, S., Leu, N.A., Scholer, H.R. & McLaughlin, K.J. Pluripotency deficit in clones overcome by clone-clone aggregation: epigenetic complementation? EMBO J 22, 5304–5312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burnside, A.S. & Collas, P. Induction of Oct-3/4 expression in somatic cells by gap junction-mediated cAMP signaling from blastomeres. Eur. J. Cell Biol. 81, 585–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Richards, M., Tan, S.P., Tan, J.H., Chan, W.K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pyle, A.D., Lock, L.F. & Donovan, P.J. Neurotrophins mediate human embryonic stem cell survival. Nat. Biotechnol. 24, 344–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Mitalipova, M.M. et al. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23, 19–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Baker, D.E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ellerstrom, C., Strehl, R., Noaksson, K., Hyllner, J. & Semb, H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25, 1690–1696 (2007).

    Article  PubMed  Google Scholar 

  24. Bajpai, R., Lesperance, J., Kim, M. & Terskikh, A.V. Efficient propagation of single cells accutase-dissociated human embryonic stem cells. Mol. Reprod. Dev. 75, 818–827 (2007).

    Article  Google Scholar 

  25. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Daheron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, R.H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl. Acad. Sci. USA 103, 6907–6912 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bavister, B. Oxygen concentration and preimplantation development. Reprod. Biomed. Online 9, 484–486 (2004).

    Article  PubMed  Google Scholar 

  30. Ezashi, T., Das, P. & Roberts, R.M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. USA 102, 4783–4788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forsyth, N.R. et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8, 16–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Solter, D. & Knowles, B.B. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amit, M. & Itskovitz-Eldor, J. Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200, 225–232 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Genbacev, O. et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 83, 1517–1529 (2005).

    Article  PubMed  Google Scholar 

  35. Ludwig, T.E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C. & Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Richards, M. et al. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Richards, M., Fong, C.Y., Tan, S., Chan, W.K. & Bongso, A. An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22, 779–789 (2004).

    Article  PubMed  Google Scholar 

  40. Scott, L. The biological basis of non-invasive strategies for selection of human oocytes and embryos. Hum. Reprod. Update 9, 237–249 (2003).

    Article  PubMed  Google Scholar 

  41. Racowsky, C. et al. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil. Steril. 73, 558–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Check, J.H., Summers-Chase, D., Yuan, W., Horwath, D. & Wilson, C. Effect of embryo quality on pregnancy outcome following single embryo transfer in women with a diminished egg reserve. Fertil. Steril. 87, 749–756 (2007).

    Article  PubMed  Google Scholar 

  43. Gardner, D.K., Lane, M., Stevens, J., Schlenker, T. & Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Balaban, B. et al. Blastocyst quality affects the success of blastocyst-stage embryo transfer. Fertil. Steril. 74, 282–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Wilson, M. et al. Transfer of blastocysts and morulae on day 5. Fertil. Steril. 82, 327–333 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible through the generosity and vision of Joshua and Anita Bekenstein, the Harvard Stem Cell Institute and Children's Hospital Boston. G.Q.D. is a recipient of the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research.

Author information

Authors and Affiliations

Authors

Contributions

P.H.L. and A.Y. contributed equally to this work.

Corresponding author

Correspondence to George Q Daley.

Supplementary information

Supplementary Note

Consent form (DOC 2044 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerou, P., Yabuuchi, A., Huo, H. et al. Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat Protoc 3, 923–933 (2008). https://doi.org/10.1038/nprot.2008.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.60

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing