Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells

Abstract

The isolation and expansion of precursor cells in a serum-free culture system allows for the systematic characterization of their properties and the intrinsic and extrinsic signals that regulate their function. The discovery of neural stem cells in the adult mouse brain was made possible by the creation of a novel culture system subsequently termed the neurosphere assay. Therein, the dissociated adult mouse periventricular area was plated in the presence of epidermal growth factor, but in the absence of adhesive substrates, which resulted in the generation of spheres of proliferating cells that detached from the plate bottom and remained suspended in the media. Since its inception, the neurosphere culture system has been widely used in the neural precursor cell field and has been extensively adapted for the isolation and expansion of corneal, cardiac, skin, prostate, mammary and brain tumor stem cells. The original neurosphere culture protocol, which takes approximately 10 d to complete, is described here in detail.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissection of embryonic day 14 GE.
Figure 2: Generation of multipotent neurospheres from embryonic day 14 GE.

Similar content being viewed by others

References

  1. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Gross, C.G. Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci. 1, 67–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Merkle, F.T. & Alvarez-Buylla, A. Neural stem cells in mammalian development. Curr. Opin. Cell Biol. 18, 704–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Yokoo, S. et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest. Ophthalmol. Vis. Sci. 46, 1626–1631 (2005).

    Article  PubMed  Google Scholar 

  5. Tomita, Y. et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J. Cell Biol. 170, 1135–1146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toma, J.G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lawson, D.A., Xin, L., Lukacs, R.U., Cheng, D. & Witte, O.N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl. Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  10. Jensen, J.B. & Parmar, M. Strengths and limitations of the neurosphere culture system. Mol. Neurobiol. 34, 153–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Marshall, G.P. II, Reynolds, B.A. & Laywell, E.D. Using the neurosphere assay to quantify neural stem cells in vivo. Curr. Pharm. Biotechnol. 8, 141–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Chaichana, K., Zamora-Berridi, G., Camara-Quintana, J. & Quinones-Hinojosa, A. Neurosphere assays: growth factors and hormone differences in tumor and nontumor studies. Stem Cells 24, 2851–2857 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Noble, M., Mayer-Proschel, M. & Proschel, C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid. Redox Signal. 7, 1456–1467 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Chojnacki, A. & Weiss, S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J. Neurosci. 24, 10888–10899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mabie, P.C. et al. Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial–astroglial progenitor cells. J. Neurosci. 17, 4112–4120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reynolds, B.A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reynolds, B.A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Gregg, C. & Weiss, S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132, 565–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y. et al. Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Brewer, G.J. & Torricelli, J.R. Isolation and culture of adult neurons and neurospheres. Nat. Protoc. 2, 1490–1498 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dorothea Livingstone and Rozina Hassam for technical comments on the manuscript. This work was supported by the Canadian Institutes of Health Research. S.W. is an Alberta Heritage Foundation for Medical Research Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnacki, A., Weiss, S. Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3, 935–940 (2008). https://doi.org/10.1038/nprot.2008.55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.55

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing