Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative DNase footprint titration: a tool for analyzing the energetics of protein–DNA interactions

Abstract

A major goal in biomedical research is to determine the mechanisms responsible for gene regulation. However, the promoters and operators that control transcription are often complex in nature, containing multiple-binding sites with which DNA-binding proteins can interact cooperatively. Quantitative DNase footprint titration is one of the few techniques capable of resolving the microscopic binding affinities responsible for the macroscopic assembly process. Here, we present a step-by-step protocol for carrying out a footprint titration experiment. We then describe how to quantify the resultant images to generate individual-site binding curves. Finally, we derive basic equations for binding at each site and present an overview of the fitting process, applying it to the anticipated results. Users should anticipate that the footprinting experiment will take 3–5 d starting from DNA template isolation to image acquisition and quantitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the footprinting reaction.
Figure 2: Schematic layout of a DNA fragment used in DNase footprinting.
Figure 3: Quantitative footprint titration of a DNA promoter containing two identical, cooperatively interacting, binding sites (PRE2).
Figure 4: Transition curves generated from a footprint titration.
Figure 5: Schematic representation of a cooperative, two-site binding reaction.
Figure 6: Apparent fractional saturation of the reduced-valency template used in the global analysis of the PRE2 promoter.
Figure 7: Global analysis of the wild-type two site promoter and the reduced valency promoter.

Similar content being viewed by others

References

  1. Galas, D.J. & Schmitz, A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, A.D., Meyer, B.J. & Ptashne, M. Interactions between DNA-bound repressors govern regulation by the λ phage repressor. Proc. Natl. Acad. Sci. USA 76, 5061–5065 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ptashne, M. A Genetic Switch: Gene Control and Phage λ (Cell Press and Blackwell Scientific Publications, Cambridge, MA, 1986).

    Google Scholar 

  4. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 130, 132–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. 'Footprint' titrations yield valid thermodynamic isotherms. Proc. Natl. Acad. Sci. USA 83, 8462–8466 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ackers, G.K., Johnson, A.D. & Shea, M.A. Quantitative model for gene regulation by λ phage repressor. Proc. Natl. Acad. Sci. USA 79, 1129–1133 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koblan, K.S. & Ackers, G.K. Cooperative protein-DNA interactions: effects of KCl on λ cI binding to OR . Biochemistry 30, 7822–7827 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Koblan, K.S. & Ackers, G.K. Site-specific enthalpic regulation of DNA transcription at bacteriophage λ OR . Biochemistry 31, 57–65 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Senear, D.F. & Ackers, G.K. Proton-linked contributions to site-specific interactions of λ cI repressor and OR . Biochemistry 29, 6568–6577 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Chahla, M., Wooll, J., Laue, T.M., Nguyen, N. & Senear, D.F. Role of protein-protein bridging interactions on cooperative assembly of DNA-bound CRP-CytR-CRP complex and regulation of the Escherichia coli CytR regulon. Biochemistry 42, 3812–3825 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Connaghan-Jones, K.D., Heneghan, A.F., Miura, M.T. & Bain, D.L. Thermodynamic analysis of progesterone receptor-promoter interactions reveals a molecular model for isoform-specific function. Proc. Natl. Acad. Sci. USA 104, 2187–2192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petri, V., Hsieh, M., Jamison, E. & Brenowitz, M. DNA sequence-specific recognition by the Saccharomyces cerevisiae 'TATA' binding protein: promoter-dependent differences in the thermodynamics and kinetics of binding. Biochemistry 37, 15842–15849 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Streaker, E.D., Gupta, A. & Beckett, D. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding. Biochemistry 41, 14263–14271 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh, M. & Brenowitz, M. Quantitative kinetics footprinting of protein-DNA association reactions. Methods Enzymol. 274, 478–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Pray, T.R., Burz, D.S. & Ackers, G.K. Cooperative non-specific DNA binding by octamerizing λ cI repressors: a site-specific thermodynamic analysis. J. Mol. Biol. 282, 947–958 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279, 1940–1943 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Eftink, M.R. Use of fluorescence spectroscopy as thermodynamics tool. Methods Enzymol. 323, 459–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S. & Freire, E. Isothermal titration calorimetry. In Current Protocols in Cell Biology (eds. Bonifacino, J. S. et al.) 17.8 (John Wiley & Sons, New York, 2004).

    Google Scholar 

  19. Fried, M. & Crothers, D.M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garner, M.M. & Revzin, A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3060 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanious, F.A., Nguyen, B. & Wilson, W.D. Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. Methods Cell Biol. 84, 53–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Hellman, L.M. & Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brenowitz, M., Senear, D.F. & Ackers, G.K. Flanking DNA-sequences contribute to the specific binding of cI-repressor and OR1. Nucleic Acids Res. 17, 3747–3755 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Senear, D.F., Dalma-Weiszhausz, D.D. & Brenowitz, M. Effects of anomalous migration and DNA to protein ratios on resolution of equilibrium constants from gel mobility-shift assays. Electrophoresis 14, 704–712 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Carruthers, L.M., Schirf, V.R., Demeler, B. & Hansen, J.C. Sedimentation velocity analysis of macromolecular assemblies. Methods Enzymol. 321, 66–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Laue, T.M. Sedimentation equilibrium as thermodynamic tool. Methods Enzymol. 259, 427–452 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Valdes, R. Jr & Ackers, G.K. Study of protein subunit association equilibria by elution gel chromatography. Methods Enzymol. 61, 125–142 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Heneghan, A.F., Berton, N., Miura, M.T. & Bain, D.L. Self-association energetics of an intact, full-length nuclear receptor: the B-isoform of human progesterone receptor dimerizes in the micromolar range. Biochemistry 44, 9528–9537 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Maluf, N.K., Fischer, C.J. & Lohman, T.M. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J. Mol. Biol. 325, 913–935 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Daugherty, M.A., Brenowitz, M. & Fried, M.G. Participation of the amino-terminal domain in the self-association of the full-length yeast TATA binding protein. Biochemistry 39, 4869–4880 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Laskey, R.A. & Mills, A.D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 82, 314–316 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Connaghan-Jones, K.D., Heneghan, A.F., Miura, M.T. & Bain, D.L. Thermodynamic dissection of progesterone receptor interactions at the mouse mammary tumor virus promoter: Monomer binding and strong cooperativity dominate the assembly reaction. J. Mol. Biol. 377, 1144–1160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heneghan, A.F., Connaghan-Jones, K.D., Miura, M.T. & Bain, D.L. Cooperative DNA binding by the B-isoform of human progesterone receptor: thermodynamic analysis reveals strongly favorable and unfavorable contributions to assembly. Biochemistry 45, 3285–3296 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Heneghan, A.F., Connaghan-Jones, K.D., Miura, M.T. & Bain, D.L. Coactivator assembly at the promoter: efficient recruitment of SRC2 is coupled to cooperative DNA binding by the progesterone receptor. Biochemistry 46, 11023–11032 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Riggs, A.D., Bourgeois, S., Newby, R.F. & Cohn, M. DNA binding of the lac repressor. J. Mol. Biol. 34, 365–368 (1968).

    Article  CAS  PubMed  Google Scholar 

  36. Senear, D.F., Brenowitz, M., Shea, M.A. & Ackers, G.K. Energetics of cooperative protein-DNA interactions: comparison between quantitative deoxyribonuclease footprint titration and filter binding. Biochemistry 25, 7344–7354 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hill, T.L. An Introduction to Statistical Thermodynamics (Dover Publications, New York, 1960).

    Google Scholar 

  39. Johnson, M.L. Why, when, and how biochemists should use least squares. Anal. Biochem. 206, 215–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Koblan, K.S., Bain, D.L., Beckett, D., Shea, M.A. & Ackers, G.K. Analysis of site-specific interaction parameters in protein-DNA complexes. Methods Enzymol. 210, 405–425 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Trauger, J.W. & Dervan, P.B. Footprinting methods for analysis of pyrrole-imidazole polyamide/DNA complexes. Methods Enzymol. 340, 450–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ozoline, O.N. & Tsyganov, M.A. Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNase I footprinting technique: compilation analysis. Nucleic Acids Res. 23, 4533–4541 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strahs, D. & Brenowitz, M. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage λ to OR . J. Mol. Biol. 244, 494–510 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. Time-resolved synchrotron X-ray 'footprinting', a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Petri, V., Hsieh, M. & Brenowitz, M. Thermodynamic and kinetic characterization of the binding of the TATA binding protein to the adenovirus E4 promoter. Biochemistry 34, 9977–9984 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Pastor, N., Weinstein, H., Jamison, E. & Brenowitz, M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J. Mol. Biol. 304, 55–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Connaghan-Jones, K.D., Heneghan, A.F., Miura, M.T. & Bain, D.L. Hydrodynamic analysis of the human progesterone receptor A-isoform reveals that self-association occurs in the micromolar range. Biochemistry 45, 12090–12099 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health, USA grant R01-DK061933 to D.L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L Bain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connaghan-Jones, K., Moody, A. & Bain, D. Quantitative DNase footprint titration: a tool for analyzing the energetics of protein–DNA interactions. Nat Protoc 3, 900–914 (2008). https://doi.org/10.1038/nprot.2008.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.53

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing