Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae

Abstract

It is often difficult to produce eukaryotic membrane proteins in large quantities, which is a major obstacle for analyzing their biochemical and structural features. To date, yeast has been the most successful heterologous overexpression system in producing eukaryotic membrane proteins for high-resolution structural studies. For this reason, we have developed a protocol for rapidly screening and purifying eukaryotic membrane proteins in the yeast Saccharomyces cerevisiae. Using this protocol, in 1 week many genes can be rapidly cloned by homologous recombination into a 2 μ GFP-fusion vector and their overexpression potential determined using whole-cell and in-gel fluorescence. The quality of the overproduced eukaryotic membrane protein-GFP fusions can then be evaluated over several days using confocal microscopy and fluorescence size-exclusion chromatography (FSEC). This protocol also details the purification of targets that pass our quality criteria, and can be scaled up for a large number of eukaryotic membrane proteins in either an academic, structural genomics or commercial environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Cloning by homologous recombination into 2 μ Saccharomyces cerevisiae GFP-fusion vector.
Figure 3: Estimating reliable expression levels of eukaryotic membrane protein-GFP fusions from S. cerevisiae whole-cell fluorescent measurements.
Figure 4: Examples of membrane protein GFP-fusion localization in S. cerevisiae as monitored by confocal microscopy.
Figure 5: Determining the monodispersity of membrane protein-GFP fusions in different detergents using fluorescence size-exclusion chromatography (FSEC).
Figure 6: Flowchart illustrating the purification of eukaryotic membrane proteins from GFP-fusions.
Figure 7: Examples of purified eukaryotic transport proteins.

Similar content being viewed by others

References

  1. Drew, D.E., von Heijne, G., Nordlund, P. & de Gier, J.W. Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett. 507, 220–224 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  2. Drew, D., Lerch, M., Kunji, E., Slotboom, D.J. & de Gier, J.W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  3. Drew, D. et al. A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci. 14, 2011–2017 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  4. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  Google Scholar 

  5. Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  6. Newstead, S., Kim, H., von Heijne, G., Iwata, S. & Drew, D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 13936–13941 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  7. Ferguson, A.D. et al. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317, 510–512 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  8. Nyblom, M. et al. Exceptional overproduction of a functional human membrane protein. Protein Expr. Purif. 56, 110–120 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  9. Jidenko, M. et al. Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 102, 11687–11691 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  10. Pedersen, B.P., Buch-Pedersen, M.J., Morth, J.P., Palmgren, M.G. & Nissen, P. Crystal structure of the plasma membrane proton pump. Nature 450, 1111–1114 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  11. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell. Biol. 4, 181–191 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  12. Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J.L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132, 101–112 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  13. Niebauer, R.T. & Robinson, A.S. Exceptional total and functional yields of the human adenosine (A2a) receptor expressed in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 46, 204–211 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  14. Kota, J., Gilstring, C.F. & Ljungdahl, P.O. Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J. Cell Biol. 176, 617–628 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  15. Cormack, B.P. et al. Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143 (Pt 2), 303–311 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  16. Lucast, L.J., Batey, R.T. & Doudna, J.A. Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques 30, 544–546, 548, 550 passim (2001).

    Article  CAS  PubMed Central  Google Scholar 

  17. Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  18. Sato, K., Sato, M. & Nakano, A. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J. Cell Biol. 152, 935–944 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  19. Wagner, S., Bader, M.L., Drew, D. & de Gier, J.W. Rationalizing membrane protein overexpression. Trends Biotechnol. 24, 364–371 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  20. André, N. et al. Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. 15, 1115–1126 (2006).

    Article  PubMed Central  Google Scholar 

  21. Drew, D. et al. Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc. Natl. Acad. Sci. USA 99, 2690–2695 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  22. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  23. Guan, L., Mirza, O., Verner, G., Iwata, S. & Kaback, H.R. Structural determination of wild-type lactose permease. Proc. Natl. Acad. Sci. USA 104, 15294–15298 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  24. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K· channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  25. Burke, D., Dawson, D. & Stearns, T. Methods in Yeast Genetics, Cold Spring Harbor Laboratory Course Manual, 2000 edition (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

  26. Stimpson, H.E., Lewis, M.J. & Pelham, H.R. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. EMBO J. 25, 662–672 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  27. Galan, J.M., Moreau, V., Andre, B., Volland, C. & Haguenauer-Tsapis, R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  28. Liu, J., Sitaram, A. & Burd, C.G. Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase. Traffic 8, 1375–1384 (2007).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jan-Willem de Gier, Mitsunori Shiroishi, Shuichiro Goda and the reviewers for critically reading the manuscript and for useful comments. D.D. was a recipient of an European Molecular Biology Organization (EMBO) long-term fellowship. Funded by grants from the European Membrane Protein Consortium (E-MEP), the Membrane Protein Structure Initiative (MPSI) and the Biotechnology and Biological Sciences Research Council (BBSRC) (to S.I.). The project was also supported by grant number R01GM081827 from the National Institute of General Medical Sciences (to G.v.H. and H.K.); the content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Drew or So Iwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, D., Newstead, S., Sonoda, Y. et al. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3, 784–798 (2008). https://doi.org/10.1038/nprot.2008.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.44

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing