Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

NMR: prediction of molecular alignment from structure using the PALES software

Abstract

Orientational restraints such as residual dipolar couplings promise to overcome many of the problems that traditionally limited liquid-state nuclear magnetic resonance spectroscopy. Recently, we developed methods to predict a molecular alignment tensor and thus residual dipolar couplings for a given molecular structure. This provides many new opportunities for the study of the structure and dynamics of proteins, nucleic acids, oligosaccharides and small molecules. This protocol details the use of the software PALES (Prediction of AlignmEnt from Structure) for prediction of an alignment tensor from a known three-dimensional (3D) coordinate file of a solute. The method is applicable to alignment of molecules in many neutral and charged orienting media and takes into account the molecular shape and 3D charge distribution of the molecule.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic outline of the PALES algorithm for the prediction of molecular alignment in the case of steric obstruction.
Figure 2: Schematic outline of the PALES algorithm simulating weak ordering of molecules in charged alignment media.
Figure 3: Comparison between experimental one-bond 1H-15N RDCs and values predicted from the 3D charge distribution and shape of the 76-residue protein ubiquitin (PDB code: 1D3Z; mean structure).

Similar content being viewed by others

References

  1. Wuthrich, K. NMR studies of structure and function of biological macromolecules (Nobel Lecture). Angew. Chem. Int. Ed. 42, 3340–3363 (2003).

    Article  Google Scholar 

  2. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  3. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  4. Prestegard, J.H., Al-Hashimi, H.M. & Tolman, J.R. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000).

    Article  CAS  Google Scholar 

  5. Bax, A., Kontaxis, G. & Tjandra, N. Nuclear magnetic resonance of biological macromolecules. Part B, 127–174 (2001).

  6. Bothner-By, A.A. Magnetic field induced alignment of molecules. In Encyclopedia of Nuclear Magnetic Resonance. (eds. Grant, D.M. & Harris, R.K.) 2932–2938 (Wiley, Chichester, 1996).

    Google Scholar 

  7. Saupe, A. & Englert, G. Phys. Rev. Lett. 11, 462–464 (1963).

    Article  CAS  Google Scholar 

  8. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar H-1-N-15 and H-1-C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997).

    Article  CAS  Google Scholar 

  9. Delaglio, F., Kontaxis, G. & Bax, A. Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J. Am. Chem. Soc. 122, 2142–2143 (2000).

    Article  CAS  Google Scholar 

  10. Cornilescu, G., Marquardt, J.L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    Article  CAS  Google Scholar 

  11. Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. & Prestegard, J.H. Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38, 9013–9022 (1999).

    Article  CAS  Google Scholar 

  12. Meiler, J., Prompers, J.J., Peti, W., Griesinger, C. & Bruschweiler, R. Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J. Am. Chem. Soc. 123, 6098–6107 (2001).

    Article  CAS  Google Scholar 

  13. Mohana-Borges, R., Goto, N.K., Kroon, G.J.A., Dyson, H.J. & Wright, P.E. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings. J. Mol. Biol. 340, 1131–1142 (2004).

    Article  CAS  Google Scholar 

  14. Bertoncini, C.W. et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc. Natl. Acad. Sci. USA 102, 1430–1435 (2005).

    Article  CAS  Google Scholar 

  15. Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000).

    Article  CAS  Google Scholar 

  16. Ferrarini, A. Modeling of macromolecular alignment in nematic virus suspensions. Application to the prediction of NMR residual dipolar couplings. J. Phys. Chem. B 107, 7923–7931 (2003).

    Article  CAS  Google Scholar 

  17. Zweckstetter, M., Hummer, G. & Bax, A. Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid crystalline phases. Biophys. J. 86, 3444–3460 (2004).

    Article  CAS  Google Scholar 

  18. Zweckstetter, M. Prediction of charge-induced molecular alignment: residual dipolar couplings at pH 3 and alignment in surfactant liquid crystalline phases. Eur. Biophys. J. 35, 170–180 (2006).

    Article  CAS  Google Scholar 

  19. Wu, B., Petersen, M., Girard, F., Tessari, M. & Wijmenga, S.S. Prediction of molecular alignment of nucleic acids in aligned media. J. Biomol. NMR 35, 103–115 (2006).

    Article  CAS  Google Scholar 

  20. Almond, A. & Axelsen, J.B. Physical interpretation of residual dipolar couplings in neutral aligned media. J. Am. Chem. Soc. 124, 9986–9987 (2002).

    Article  CAS  Google Scholar 

  21. Azurmendi, H.F. & Bush, C.A. Tracking alignment from the moment of inertia tensor (TRAMITE) of biomolecules in neutral dilute liquid crystal solutions. J. Am. Chem. Soc. 124, 2426–2427 (2002).

    Article  CAS  Google Scholar 

  22. Fernandes, M.X., Bernado, P., Pons, M. & de la Torre, J.G. An analytical solution to the problem of the orientation of rigid particles by planar obstacles. Application to membrane systems and to the calculation of dipolar couplings in protein NMR spectroscopy. J. Am. Chem. Soc. 123, 12037–12047 (2001).

    Article  CAS  Google Scholar 

  23. Bewley, C.A. Rapid validation of the overall structure of an internal domain-swapped mutant of the anti-HIV protein cyanovirin-N using residual dipolar couplings. J. Am. Chem. Soc. 123, 1014–1015 (2001).

    Article  CAS  Google Scholar 

  24. Bewley, C.A. & Clore, G.M. Determination of the relative orientation of the two halves of the domain-swapped dimer of cyanovirin-N in solution using dipolar couplings and rigid body minimization. J. Am. Chem. Soc. 122, 6009–6016 (2000).

    Article  CAS  Google Scholar 

  25. Valafar, H. & Prestegard, J.H. Rapid classification of a protein fold family using a statistical analysis of dipolar couplings. Bioinformatics 19, 1549–1555 (2003).

    Article  CAS  Google Scholar 

  26. Warren, J.J. & Moore, P.B. Application of dipolar coupling data to the refinement of the solution structure of the Sarcin–Ricin loop RNA. J. Biomol. NMR 20, 311–323 (2001).

    Article  CAS  Google Scholar 

  27. van Buuren, B.N.M. et al. NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides. Angew. Chem. Int. Ed. 43, 187–192 (2004).

    Article  CAS  Google Scholar 

  28. Bernado, P. et al. A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc. Natl. Acad. Sci. USA 102, 17002–17007 (2005).

    Article  CAS  Google Scholar 

  29. Mukrasch, M.D. et al. Highly populated turn conformations in natively unfolded Tau protein identified from residual dipolar couplings and molecular simulation. J. Am. Chem. Soc. 129, 5235–5243 (2007).

    Article  CAS  Google Scholar 

  30. Skora, L. et al. Charge-induced molecular alignment of intrinsically disordered proteins. Angew. Chem. Int. Ed. 45, 7012–7015 (2006).

    Article  CAS  Google Scholar 

  31. Azurmendi, H.F., Martin-Pastor, M. & Bush, C.A. Conformational studies of Lewis X and Lewis A trisaccharides using NMR residual dipolar couplings. Biopolymers 63, 89–98 (2002).

    Article  CAS  Google Scholar 

  32. Zhang, Q., Throolin, R., Pitt, S.W., Serganov, A. & Al-Hashimi, H.M. Probing motions between equivalent RNA domains using magnetic field induced residual dipolar couplings: accounting for correlations between motions and alignment. J. Am. Chem. Soc. 125, 10530–10531 (2003).

    Article  CAS  Google Scholar 

  33. Zweckstetter, M., Schnell, J.R. & Chou, J.J. Determination of the packing mode of the coiled-coil domain of cGMP-Dependent protein kinase I alpha in solution using charge-predicted dipolar couplings. J. Am. Chem. Soc. 127, 11918–11919 (2005).

    Article  CAS  Google Scholar 

  34. Iwahara, J., Zweckstetter, M. & Clore, G.M. NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc. Natl. Acad. Sci. USA 103, 15062–15067 (2006).

    Article  CAS  Google Scholar 

  35. Clore, G.M., Gronenborn, A.M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216–221 (1998).

    Article  CAS  Google Scholar 

  36. Warren, J.J. & Moore, P.B. A maximum likelihood method for determining Da(PQ) and R for sets of dipolar coupling data. J. Magn. Reson. 149, 271–275 (2001).

    Article  CAS  Google Scholar 

  37. Losonczi, J.A., Andrec, M., Fischer, M.W.F. & Prestegard, J.H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).

    Article  CAS  Google Scholar 

  38. Zweckstetter, M. & Bax, A. Evaluation of uncertainty in alignment tensors obtained from dipolar couplings. J. Biomol. NMR 23, 127–137 (2002).

    Article  CAS  Google Scholar 

  39. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules .1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  40. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splittings in N-15-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).

    Article  CAS  Google Scholar 

  41. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. The double cubic lattice method—efficient approaches to numerical-integration of surface-area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem. 16, 273–284 (1995).

    Article  CAS  Google Scholar 

  42. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  Google Scholar 

  43. Debye, P. & Hueckel, E. Zur Theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen. Physikalische Zeitschrift 24, 185–206 (1923).

    CAS  Google Scholar 

  44. Chapman, D.L. A contribution to the theory of electrocapillarity. Philosophical Magazine 25, 475–481 (1913).

    Google Scholar 

  45. Gouy, D.L. Sur la constitution de la charge électrique a la surface d'un électrolyte. Anniue Physique 9, 457–468 (1910).

    CAS  Google Scholar 

  46. Stigter, D. Coil expansion in poly-electrolyte solutions. Macromolecules 15, 635–641 (1982).

    Article  CAS  Google Scholar 

  47. Sass, J. et al. Purple membrane induced alignment of biological macromolecules in the magnetic field. J. Am. Chem. Soc. 121, 2047–2055 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Ad Bax for his guidance during my postdoctoral stay in his lab and his continuous support to develop PALES. Many thanks also to Frank Delaglio for useful discussions and access to source code handling input/output of dipolar couplings and PDB files, as well as best-fit of dipolar couplings to PDB files. This work was supported by the Max Planck Society and the DFG through grants ZW71/1-1 to 3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zweckstetter.

Supplementary information

Supplementary Data

A document containing (1) a shell script to run the PALES commands outlined in the protocol, (2) input and output files of the protocol, and (3) some comments regarding the information reported in the files. (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweckstetter, M. NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc 3, 679–690 (2008). https://doi.org/10.1038/nprot.2008.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.36

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing