Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Use of human tissue explants to study human infectious agents

Abstract

The study of human cell–cell and cell–pathogen interactions that occur in the context of complex tissue cytoarchitecture is critical for deciphering the mechanisms of many normal and pathogenic processes. This protocol describes methods for culturing and infecting explants of human tissues to study the pathogenesis of human infectious agents and their local interactions. The protocol relies on the use of fresh human tissues dissected into small blocks or biopsies that are cultured at the liquid–air interface on collagen rafts. These tissue blocks retain their cytoarchitecture and support productive infection of various pathogens without exogenous stimulation. Experimental details for setting up cultures of human tonsils, lymph nodes and cervicovaginal and rectosigmoid tissues, including protocols for their infection with HIV-1 and other pathogens, are described here. Using this protocol, culture and infections can be set up in 3–6 h and be maintained for 2–3 weeks, depending on the tissue used.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synopsis of explants culture setup.
Figure 2: Selected sequential steps of the preparation of a tonsillar tissue for histoculture.
Figure 3: Replication of HIV-1 in human explants of different tissues.

References

  1. Harrison, R. Observations on the living developing nerve fiber. Anat. Rec. 1, (1907).

  2. Harrison, R. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9, 787–846 (1910).

    Article  Google Scholar 

  3. Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516–528 (1912).

    CAS  Article  Google Scholar 

  4. Pantaleo, G. & Fauci, A.S. Tracking HIV during disease progression. Curr. Opin. Immunol. 6, 600–604 (1994).

    CAS  Article  Google Scholar 

  5. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease [see comments]. Nature 362, 355–358 (1993).

    CAS  Article  Google Scholar 

  6. Fauci, A.S. Host factors in the pathogenesis of HIV disease. Antibiot. Chemother. 48, 4–12 (1996).

    CAS  Article  Google Scholar 

  7. Brenchley, J.M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    CAS  Article  Google Scholar 

  8. Brenchley, J.M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    CAS  Article  Google Scholar 

  9. Estes, J. et al. Collagen deposition limits immune reconstitution in the gut. J. Infect. Dis. (2008).

  10. Brown, C.R. et al. Unique pathology in simian immunodeficiency virus-infected rapid progressor macaques is consistent with a pathogenesis distinct from that of classical AIDS. J. Virol. 81, 5594–5606 (2007).

    CAS  Article  Google Scholar 

  11. Glushakova, S., Baibakov, B., Margolis, L.B. & Zimmerberg, J. Infection of human tonsil histocultures: a model for HIV pathogenesis. Nat. Med. 1, 1320–1322 (1995).

    CAS  Article  Google Scholar 

  12. Glushakova, S., Baibakov, B., Zimmerberg, J. & Margolis, L. Experimental HIV infection of human lymphoid tissue: correlation of CD4+ T cell depletion and virus syncytium-inducing/non-syncytium-inducing phenotype in histoculture inoculated with laboratory strains and patient isolates of HIV type 1. AIDS Res. Retroviruses 13, 461–471 (1997).

    CAS  Article  Google Scholar 

  13. Grivel, J.C. et al. Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat. Med. 7, 1232–1235 (2001).

    CAS  Article  Google Scholar 

  14. Condack, C., Grivel, J.C., Devaux, P., Margolis, L. & Cattaneo, R. Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. J. Infect. Dis. 196, 541–549 (2007).

    CAS  Article  Google Scholar 

  15. Grivel, J.C., Garcia, M., Moss, W. & Margolis, L. Measles virus inhibits HIV-1 replication in human lymphoid tisue ex vivo . J. Inf. Dis. 192, 71–78 (2005).

    Article  Google Scholar 

  16. Lisco, A. et al. Viral interactions in human lymphoid tissue: human herpesvirus 7 suppresses the replication of CCR5-tropic human immunodeficiency virus type 1 via CD4 modulation. J. Virol. 81, 708–717 (2007).

    CAS  Article  Google Scholar 

  17. Biancotto, A. et al. Upregulation of human cytomegalovirus by HIV type 1 in human lymphoid tissue ex vivo . AIDS Res. Hum. Retroviruses 24, 453–462 (2008).

    CAS  Article  Google Scholar 

  18. Lisco, A. et al. Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues. Cell Host Microbe 4, 260–270 (2008).

    CAS  Article  Google Scholar 

  19. Vanpouille, C., Biancotto, A., Lisco, A. & Brichacek, B. Interactions between human immunodeficiency virus type 1 and vaccinia virus in human lymphoid tissue ex vivo . J. Virol. 81, 12458–12464 (2007).

    CAS  Article  Google Scholar 

  20. Leighton, J. A sponge matrix method for tissue culture; formation of organized aggregates of cells in vitro . J. Natl. Cancer Inst. 12, 545–561 (1951).

    CAS  PubMed  Google Scholar 

  21. Leighton, J. A method for the comparison of the fate of intravascular tumor-cell emboli in vivo and in organ culture. Natl. Cancer Inst. Monogr. 11, 157–195 (1963).

    CAS  PubMed  Google Scholar 

  22. Hoffman, R.M. Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells 3, 86–92 (1991).

    CAS  PubMed  Google Scholar 

  23. Cummins, J.E. Jr . et al. Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob. Agents Chemother. 51, 1770–1779 (2007).

    CAS  Article  Google Scholar 

  24. Palacio, J. et al. In vitro HIV1 infection of human cervical tissue. Res. Virol. 145, 155–161 (1994).

    CAS  Article  Google Scholar 

  25. Shattock, R.J., Griffin, G.E. & Gorodeski, G.I. In vitro models of mucosal HIV transmission. Nat. Med. 6, 607–608 (2000).

    CAS  Article  Google Scholar 

  26. Abner, S.R. et al. A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J. Infect. Dis. 192, 1545–1556 (2005).

    CAS  Article  Google Scholar 

  27. Fletcher, P.S. et al. Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides. AIDS 20, 1237–1245 (2006).

    Article  Google Scholar 

  28. Olbina, G., Miljkovic, D., Hoffman, R.M. & Geller, J. New sensitive discovery histoculture model for growth-inhibition studies in prostate cancer and BPH. Prostate 37, 126–129 (1998).

    CAS  Article  Google Scholar 

  29. Grivel, J.C. et al. Human immunodeficiency virus type 1 coreceptor preferences determine target T-cell depletion and cellular tropism in human lymphoid tissue. J. Virol. 74, 5347–5351 (2000).

    CAS  Article  Google Scholar 

  30. Grivel, J.C. & Margolis, L.B. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat. Med. 5, 344–346 (1999).

    CAS  Article  Google Scholar 

  31. Grivel, J.C., Malkevitch, N. & Margolis, L. Human immunodeficiency virus type 1 induces apoptosis in CD4(+) but not in CD8(+) T cells in ex vivo-infected human lymphoid tissue. J. Virol. 74, 8077–8084 (2000).

    CAS  Article  Google Scholar 

  32. Glushakova, S. et al. Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nat. Med. 4, 346–349 (1998).

    CAS  Article  Google Scholar 

  33. Lane, H.C., Volkman, D.J., Whalen, G. & Fauci, A.S. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements. J. Exp. Med. 154, 1043–1057 (1981).

    CAS  Article  Google Scholar 

  34. Volkman, D.J., Allyn, S.P. & Fauci, A.S. Antigen-induced in vitro antibody production in humans: tetanus toxoid-specific antibody synthesis. J. Immunol. 129, 107–112 (1982).

    CAS  PubMed  Google Scholar 

  35. Grivel, J.C. et al. Pathogenic effects of human herpesvirus 6 in human lymphoid tissue ex vivo . J. Virol. 77, 8280–8289 (2003).

    CAS  Article  Google Scholar 

  36. Duray, P.H. et al. Invasion of human tissue ex vivo by Borrelia burgdorferi . J. Infect. Dis. 191, 1747–1754 (2005).

    Article  Google Scholar 

  37. Nelson, C.M., Inman, J.L. & Bissell, M.J. Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat. Protoc. 3, 674–678 (2008).

    CAS  Article  Google Scholar 

  38. Giese, C. et al. A human lymph node in vitro—challenges and progress. Artif. Organs 30, 803–808 (2006).

    CAS  Article  Google Scholar 

  39. Saito, M. et al. Reconstruction of liver organoid using a bioreactor. World J. Gastroenterol. 12, 1881–1888 (2006).

    CAS  Article  Google Scholar 

  40. Kim, S.S., Penkala, R. & Abrahimi, P. A perfusion bioreactor for intestinal tissue engineering. J. Surg. Res. 142, 327–331 (2007).

    CAS  Article  Google Scholar 

  41. Margolis, L. et al. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. J. Urol. 161, 290–297 (1999).

    CAS  Article  Google Scholar 

  42. Straub, T.M. et al. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13, 396–403 (2007).

    Article  Google Scholar 

  43. Rubart, M. Two-photon microscopy of cells and tissue. Circ. Res. 95, 1154–1166 (2004).

    CAS  Article  Google Scholar 

  44. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    CAS  Article  Google Scholar 

  45. Marshall, D. et al. T cell generation including positive and negative selection ex vivo in a three-dimensional matrix. J. Hematother Stem Cell Res. 12, 565–574 (2003).

    CAS  Article  Google Scholar 

  46. Geller, J., Sionit, L., Connors, K., Youngkin, T. & Hoffman, R.M. Expression of prostate-specific antigen in human prostate specimens in in vitro three-dimensional histoculture. In Vitro Cell Dev. Biol. Anim. 29A, 523–524 (1993).

    CAS  Article  Google Scholar 

  47. Fox-Canale, A.M. et al. Human cytomegalovirus and human immunodeficiency virus type-1 co-infection in human cervical tissue. Virology 369, 55–68 (2007).

    CAS  Article  Google Scholar 

  48. Bafica, A., Scanga, C.A., Schito, M., Chaussabel, D. & Sher, A. Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J. Immunol. 172, 7229–7234 (2004).

    CAS  Article  Google Scholar 

  49. Robbins, K.T., Connors, K.M., Storniolo, A.M., Hanchett, C. & Hoffman, R.M. Sponge-gel-supported histoculture drug-response assay for head and neck cancer. Correlations with clinical response to cisplatin. Arch. Otolaryngol. Head Neck Surg. 120, 288–292 (1994).

    CAS  Article  Google Scholar 

  50. Chishima, T. et al. Use of histoculture and green fluorescent protein to visualize tumor cell host interaction. In Vitro Cell Dev. Biol. Anim. 33, 745–747 (1997).

    CAS  Article  Google Scholar 

  51. Karlsson, I. et al. Differential pathogenesis of primary CCR5-using human immunodeficiency virus type 1 isolates in ex vivo human lymphoid tissue. J. Virol. 79, 11151–11160 (2005).

    CAS  Article  Google Scholar 

  52. Grivel, J.C. et al. HIV-1 pathogenesis differs in rectosigmoid and tonsillar tissues infected ex vivo with CCR5- and CXCR4-tropic HIV-1. AIDS 21, 1263–1272 (2007).

    Article  Google Scholar 

  53. Biancotto, A. et al. Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood 109, 4272–4279 (2007).

    CAS  Article  Google Scholar 

  54. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the past and present members of the laboratory who contributed to the development of these techniques. These are (in alphabetical order) Massimo Alfano, Naomi Amichay, Boris Baibakov, Angelique Biancotto, Beda Brichacek, Silvia Chen, Cristian Condak, Wendy Fitzgerald, Svetlana Glushakova, Ingrid Karlsson, Rosangela Lima da Gomez, Andrea Lisco, Nina Malkevitch, Lucia Pinto da Silva, Atfa Sassi, Andrew Sylwester, Christophe Vanpouille and Joshua Zimmerberg. This work was supported by the intramural program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Margolis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grivel, JC., Margolis, L. Use of human tissue explants to study human infectious agents. Nat Protoc 4, 256–269 (2009). https://doi.org/10.1038/nprot.2008.245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.245

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing