Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combinatorial libraries of peptide dendrimers: design, synthesis, on-bead high-throughput screening, bead decoding and characterization

Abstract

Dendrimers are branched synthetic macromolecules. This protocol describes the synthesis (1–2 weeks), functional screening (1.5 d) and decoding (2 d) of 'one-bead-one-compound' combinatorial libraries of dendrimers assembled from amino-acid building blocks by 'split-and-mix' solid phase peptide synthesis. The method resembles that for synthesizing linear peptides, except that a branching diamino acid is used at every third position to obtain the dendritic structure. Structural diversification by splitting is restricted to four amino acids per variable position, yielding libraries of 60,000 sequences. In such libraries, the sequence of a dendrimer can be deduced uniquely from an amino-acid analysis of the solid support bead. This analysis is more reliable, faster and far less costly than Edman sequencing such that decoding multiple beads is affordable. The method is exemplified for the identification of catalytic peptide dendrimers catalyzing the hydrolysis of acyloxypyrene-trisulfonates with substrate binding (KM = 10–300 μM) and rate accelerations up to kcat/kuncat = 104 in aqueous buffer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and design of peptide dendrimers.
Figure 2
Figure 3: Percentage of sequence coverage for a combinatorial library of 65,536 sequences on NovaSyn TG amino resin (1,200,000 beads g−1).
Figure 4: Rotating apparatus for syringes.
Figure 5: Esterase activity screening catalytic peptide dendrimer library.

Similar content being viewed by others

References

  1. Lee, C.C., MacKay, J.A., Frechet, J.M.J. & Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Swali, V., Wells, N.J., Langley, G.J. & Bradley, M. Solid-phase dendrimer synthesis and the generation of super-high-loading resin beads for combinatorial chemistry. J. Org. Chem. 62, 4902–4903 (1997).

    Article  CAS  Google Scholar 

  3. Amblard, M., Fehrentz, J.A., Martinez, J. & Subra, G. Fundamentals of modern peptide synthesis. Methods Mol. Biol. 298, 3–24 (2005).

    CAS  PubMed  Google Scholar 

  4. Esposito, A., Delort, E., Lagnoux, D., Djojo, F. & Reymond, J.L. Catalytic peptide dendrimers. Angew Chem. Int. Ed. Engl. 42, 1381–1383 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lagnoux, D., Delort, E., Douat-Casassus, C., Esposito, A. & Reymond, J.L. Synthesis and esterolytic activity of catalytic peptide dendrimers. Chemistry 10, 1215–1226 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Douat-Casassus, C., Darbre, T. & Reymond, J.L. Selective catalysis with peptide dendrimers. J. Am. Chem. Soc. 126, 7817–7826 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. General-method for rapid synthesis of multicomponent peptide mixtures. Int. J. Peptide Protein Res. 37, 487–493 (1991).

    Article  CAS  Google Scholar 

  8. Lam, K.S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Houghten, R.A. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Clouet, A., Darbre, T. & Reymond, J.L. A combinatorial approach to catalytic peptide dendrimers. Angew Chem. Int. Ed. Engl. 43, 4612–4615 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Clouet, A., Darbre, T. & Reymond, J.L. Combinatorial synthesis, selection, and properties of esterase peptide dendrimers. Biopolymers 84, 114–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kofoed, J., Darbre, T. & Reymond, J.L. Artificial aldolases from peptide dendrimer combinatorial libraries. Org. Biomol. Chem. 4, 3268–3281 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Sommer, P., Uhlich, N.A., Reymond, J.L. & Darbre, T. A peptide dendrimer model for vitamin B12 transport proteins. Chembiochem 9, 689–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kolomiets, E., Johansson, E.M., Renaudet, O., Darbre, T. & Reymond, J.L. Neoglycopeptide dendrimer libraries as a source of lectin binding ligands. Org. Lett. 9, 1465–1468 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Johansson, E.M.V. et al. Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins. New J. Chem. 31, 1291–1299 (2007).

    Article  CAS  Google Scholar 

  16. Lebl, M. et al. One-bead-one-structure combinatorial libraries. Biopolymers 37, 177–198 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Lam, K.S., Lebl, M. & Krchnak, V. The 'one-bead-one-compound' combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Guillier, F., Orain, D. & Bradley, M. Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem. Rev. 100, 2091–2158 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ede, N.J. & Wu, Z. Beyond Rf tagging. Curr. Opin. Chem. Biol. 7, 374–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Javor, S., Delort, E., Darbre, T. & Reymond, J.L. A peptide dendrimer enzyme model with a single catalytic site at the core. J. Am. Chem. Soc. 129, 13238–13246 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Redman, J.E., Wilcoxen, K.M. & Ghadiri, M.R. Automated mass spectrometric sequence determination of cyclic peptide library members. J. Comb. Chem. 5, 33–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Ohlmeyer, M.H. et al. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl. Acad. Sci. USA 90, 10922–10926 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Herpin, T.F., Van Kirk, K.G., Salvino, J.M., Yu, S.T. & Labaudiniere, R.F. Synthesis of a 10,000 member 1,5-benzodiazepine-2-one library by the directed sorting method. J. Comb. Chem. 2, 513–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Nicolaou, K.C. et al. Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using nanokans and optical encoding. J. Am. Chem. Soc. 122, 9954–9967 (2000).

    Article  CAS  Google Scholar 

  25. Vaino, A.R. & Janda, K.D. Euclidean shape-encoded combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 97, 7692–7696 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kofoed, J. & Reymond, J.L. A general method for designing combinatorial peptide libraries decodable by amino acid analysis. J. Comb. Chem. 9, 1046–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Berne and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Reymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillard, N., Clouet, A., Darbre, T. et al. Combinatorial libraries of peptide dendrimers: design, synthesis, on-bead high-throughput screening, bead decoding and characterization. Nat Protoc 4, 132–142 (2009). https://doi.org/10.1038/nprot.2008.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.241

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing