Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A sensitive recombinant cell-based bioluminescent assay for detection of androgen-like compounds

Abstract

We report a step-by-step protocol describing how to develop and use a yeast-based bioassay for androgen-like compounds. Saccharomyces cerevisiae cells are genetically engineered to express the human androgen receptor (hAR) and the bioluminescent (BL) reporter gene luciferase (from Photinus pyralis) under the control of the androgen response element (ARE). In the presence of androgens, activated hAR binds to the ARE sequences and activates luciferase expression. After addition of D-luciferin, luciferase activity measurements can be performed, and the BL signal is proportional to the androgenic activity of the sample. Cytotoxic effects of the sample are monitored by the use of a control yeast strain that allows BL signal correction according to cell viability. After overnight culture of the recombinant strain, the assay can be accomplished in a 96-well microplate format in 1 working day with a detection limit of 0.05 nM for testosterone and intra- and interassay variability of 14% and 23%, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the androgen-responsive yeast.
Figure 2: Schematic of the plasmid YipLucARE.
Figure 3: Dose–response curve for testosterone.
Figure 4: Androgenic activity of human serum samples measured with the androgen-responsive strain: 10 human male serum samples (age 18–39 years), 8 female (of premenopause age) and 2 male newborn serum samples.

Similar content being viewed by others

References

  1. Singh, S.M., Gauthier, S. & Labrie, F. Androgen receptor antagonists (antiandrogens): structure–activity relationships. Curr. Med. Chem. 7, 211–247 (2000).

    Article  CAS  Google Scholar 

  2. Verrijdt, G., Haelens, A. & Claessens, F. Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression. Mol. Genet. Metab. 78, 175–185 (2003).

    Article  CAS  Google Scholar 

  3. Xu, L.C. et al. Evaluation of androgen receptor transcriptional activities of some pesticides in vitro . Toxicology 243, 59–65 (2008).

    Article  CAS  Google Scholar 

  4. Henley, D.V. & Korach, K.S. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147, 25–32 (2006).

    Article  Google Scholar 

  5. Kortenkamp, A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 115, 98–105 (2007).

    Article  Google Scholar 

  6. Orlando, E.F. & Guillette, L.J. Jr. Sexual dimorphic responses in wildlife exposed to endocrine disrupting chemicals. Environ. Res. 104, 163–173 (2007).

    Article  CAS  Google Scholar 

  7. Wolff, M.S. et al. Environmental exposures and puberty in inner-city girls. Environ. Res. 107, 393–400 (2008).

    Article  CAS  Google Scholar 

  8. Den Hond, E. & Schoeters, G. Endocrine disrupters and human puberty. Int. J. Androl. 29, 264–271 (2006).

    Article  CAS  Google Scholar 

  9. Schoeters, G., Den Hond, E., Dhooge, W., van Larebeke, N. & Leijs, M. Endocrine disruptors and abnormalities of pubertal development. Basic Clin. Pharmacol. Toxicol. 102, 168–175 (2008).

    Article  CAS  Google Scholar 

  10. Stuart, J.D. Determination of endocrine disrupting chemicals found in environmental samples by gas chromatography/mass spectrometry. Adv. Chromatogr. 45, 245–273 (2007).

    Article  CAS  Google Scholar 

  11. Ikonomou, M.G., Cai, S.S., Fernandez, M.P., Blair, J.D. & Fischer, M. Ultra-trace analysis of multiple endocrine-disrupting chemicals in municipal and bleached kraft mill effluents using gas chromatography-high-resolution mass spectrometry. Environ. Toxicol. Chem. 27, 243–251 (2008).

    Article  CAS  Google Scholar 

  12. Yu, Z., Peldszus, S. & Huck, P.M. Optimizing gas chromatographic-mass spectrometric analysis of selected pharmaceuticals and endocrine-disrupting substances in water using factorial experimental design. J. Chromatogr. A. 1148, 65–77 (2007).

    Article  CAS  Google Scholar 

  13. Roda, A. et al. Analytical approach for monitoring endocrine-disrupting compounds in urban waste water treatment plants. Anal. Bioanal. Chem. 385, 742–752 (2006).

    Article  CAS  Google Scholar 

  14. Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M. & Law, F.C. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci. Total Environ. 374, 80–90 (2007).

    Article  CAS  Google Scholar 

  15. Bovee, T.F., Lommerse, J.P., Peijnenburg, A.A., Fernandes, E.A. & Nielen, M.W. A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. J. Steroid Biochem. Mol. Biol. 108, 121–131 (2008).

    Article  CAS  Google Scholar 

  16. Sonneveld, E., Jansen, H.J., Riteco, J.A., Brouwer, A. & van der Burg, B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol. Sci. 83, 136–148 (2005).

    Article  CAS  Google Scholar 

  17. Simon, S. & Mueller, S.O. Human reporter gene assays: transcriptional activity of the androgen receptor is modulated by the cellular environment and promoter context. Toxicology 220, 90–103 (2006).

    Article  CAS  Google Scholar 

  18. Chen, J. et al. Circulating bioactive androgens in midlife women. J. Clin. Endocrinol. Metab. 91, 4387–4394 (2006).

    Article  CAS  Google Scholar 

  19. Raivio, T., Palvimo, J.J., Dunkel, L., Wickman, S. & Jänne, O.A. Novel assay for determination of androgen bioactivity in human serum. J. Clin. Endocrinol. Metab. 86, 1539–1544 (2001).

    CAS  PubMed  Google Scholar 

  20. Roy, P. et al. Screening of some anti-androgenic endocrine disruptors using a recombinant cell-based in vitro bioassay. J. Steroid Biochem. Mol. Biol. 88, 157–166 (2004).

    Article  CAS  Google Scholar 

  21. Eldridge, M.L. et al. Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl. Environ. Microbiol. 73, 6012–6018 (2007).

    Article  CAS  Google Scholar 

  22. Beck, V., Reiter, E. & Jungbauer, A. Androgen receptor transactivation assay using green fluorescent protein as a reporter. Anal. Biochem. 373, 263–271 (2008).

    Article  CAS  Google Scholar 

  23. Bovee, T.F. et al. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists. Anal. Bioanal. Chem. 389, 1549–1558 (2007).

    Article  CAS  Google Scholar 

  24. Roda, A., Pasini, P., Mirasoli, M., Michelini, E. & Guardigli, M. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol. 22, 295–303 (2004).

    Article  CAS  Google Scholar 

  25. Lundin, A. Optimised assay of firefly luciferase with stable light emission. In Bioluminescence and Chemiluminescence: Status Report (eds. Szalay, A., Kricka, L.J., Stanley, P.E.) 291–295 (John Wiley, Chichester, UK, 1993).

    Google Scholar 

  26. Chatterjee, S., Kumar, V., Majumder, C.B. & Roy, P. Screening of some anti-progestin endocrine disruptors using a recombinant yeast based in vitro bioassay. Toxicol. In Vitro 22, 788–798 (2008).

    Article  CAS  Google Scholar 

  27. Michelini, E., Leskinen, P., Virta, M., Karp, M. & Roda, A. A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Biosens. Bioelectron. 20, 2261–2267 (2005).

    Article  CAS  Google Scholar 

  28. Michelini, E. et al. Recombinant cell-based bioluminescence assay for androgen bioactivity determination in clinical samples. Clin. Chem. 51, 1995–1998 (2005).

    Article  CAS  Google Scholar 

  29. Leskinen, P., Virta, M. & Karp, M. One-step measurement of firefly luciferase activity in yeast. Yeast 20, 1109–1113 (2003).

    Article  CAS  Google Scholar 

  30. Pozo, O.J., Deventer, K., Eenoo, P.V. & Delbeke, F.T. Efficient approach for the comprehensive detection of unknown anabolic steroids and metabolites in human urine by liquid chromatography-electrospray-tandem mass spectrometry. Anal. Chem. 80, 1709–1720 (2008).

    Article  CAS  Google Scholar 

  31. Nielen, M.W. et al. Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal. Chem. 78, 424–431 (2006).

    Article  CAS  Google Scholar 

  32. Schena, M., Picard, D. & Yamamoto, K.R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 194, 389–398 (1991).

    Article  CAS  Google Scholar 

  33. Baudin-Baillieu, A., Guillemet, E., Cullin, C. & Lacroute, F. Construction of a yeast strain deleted for the TRP1 promoter and coding region that enhances the efficiency of the polymerase chain reaction-disruption method. Yeast 13, 353–356 (1997).

    Article  CAS  Google Scholar 

  34. Leskinen, P., Michelini, E., Picard, D., Karp, M. & Virta, M. Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61, 259–266 (2005).

    Article  CAS  Google Scholar 

  35. Sambrook, E., Fristch, F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd edn. (Cold Spring Harbor Laboratory Press, New York, 1989).

  36. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article  CAS  Google Scholar 

  37. Roy, P., Alevizaki, M. & Huhtaniemi, I. In vitro bioassays for androgens and their diagnostic applications. Hum. Reprod. Update 14, 73–82 (2008).

    Article  CAS  Google Scholar 

  38. Zierau, O., Lehmann, S., Vollmer, G., Schänzer, W. & Diel, P. Detection of anabolic steroid abuse using a yeast transactivation system. Steroids 73, 1143–1147 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partly supported by the Italian Ministry for University and Research (MIUR), by Fondazione Cassa di Risparmio di Bologna, by Maj and Tor Nessling Foundation and by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelini, E., Cevenini, L., Mezzanotte, L. et al. A sensitive recombinant cell-based bioluminescent assay for detection of androgen-like compounds. Nat Protoc 3, 1895–1902 (2008). https://doi.org/10.1038/nprot.2008.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.189

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing