Abstract
Regulatory genes form large networks that are fundamental to the developmental program. The protocol presented here describes a general approach to assemble maps of gene regulatory networks (GRNs). It combines high-resolution spatio-temporal profiling of regulatory genes, strategies to perturb gene expression and quantification of perturbation effects on other genes of the network. The map of the GRN emerges by integration of these data sources and explains developmental events in terms of functional linkages between regulatory genes. This protocol has been successfully applied to regulatory processes in the sea urchin embryo, but it is generally applicable to any developmental process that relies primarily on transcriptional regulation. Unraveling the GRN for a whole tissue or organ is a challenging undertaking and, depending on the complexity, may take anywhere from months to years to complete.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development
Nature Communications Open Access 04 December 2020
-
A biochemical network modeling of a whole-cell
Scientific Reports Open Access 06 August 2020
-
Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution
Genome Biology Open Access 28 February 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, San Diego, CA, 2006).
Ben-Tabou de-Leon, S. & Davidson, E.H. Gene regulation: gene control network in development. Annu. Rev. Biophys. Biomol. Struct. 36, 191 (2007).
Materna, S.C. & Davidson, E.H. Logic of gene regulatory networks. Curr. Opin. Biotechnol. 18, 351–354 (2007).
Davidson, E.H. et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev. Biol. 246, 162–190 (2002).
Ben-Tabou de-Leon, S. & Davidson, E.H. Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network. Sci STKE 14, pe47 (2006).
Oliveri, P. & Davidson, E.H. Development. Built to run, not fail. Science 315, 1510–1511 (2007).
Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).
Oliveri, P., Carrick, D.M. & Davidson, E.H. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–228 (2002).
Oliveri, P., Tu, Q. & Davidson, E.H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl. Acad. Sci. USA 105, 5955–5962 (2008).
Levine, M. & Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936–4942 (2005).
Imai, K.S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).
Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell. 13, 405–420 (2007).
Meulemans, D. & Bronner-Fraser, M. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell. 7, 291–299 (2004).
Koide, T., Hayata, T. & Cho, K.W. Xenopus as a model system to study transcriptional regulatory networks. Proc. Natl. Acad. Sci. USA 102, 4943–4948 (2005).
Vokes, S.A. et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977–1989 (2007).
Johnston, R.J. Jr., Chang, S., Etchberger, J.F., Ortiz, C.O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl. Acad. Sci. USA 102, 12449–12454 (2005).
Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster . Genes Dev. 21, 436–449 (2007).
Smith, J. A protocol describing the principles of cis-regulatory analysis in the sea urchin. Nat. Protoc. 3, 1–9 (2008).
Revilla-i-Domingo, R. & Davidson, E.H. Developmental gene network analysis. Int. J. Dev. Biol. 47, 695–703 (2003).
Livingston, B.T. et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus . Dev. Biol. 300, 335–348 (2006).
Calestani, C., Rast, J.P. & Davidson, E.H. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130, 4587–4596 (2003).
Howard-Ashby, M. et al. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev. Biol. 300, 74–89 (2006).
Howard-Ashby, M. et al. Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus . Dev. Biol. 300, 90–107 (2006).
Materna, S.C., Howard-Ashby, M., Gray, R.F. & Davidson, E.H. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev. Biol. 300, 108–120 (2006).
Rizzo, F., Fernandez-Serra, M., Squarzoni, P., Archimandritis, A. & Arnone, M.I. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev. Biol. 300, 35–48 (2006).
Tu, Q., Brown, C.T., Davidson, E.H. & Oliveri, P. Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev. Biol. 300, 49–62 (2006).
Rast, J.P., Cameron, R.A., Poustka, A.J. & Davidson, E.H. Brachyury target genes in the early sea urchin embryo isolated by differential macroarray screening. Dev. Biol. 246, 191–208 (2002).
Samanta, M.P. et al. The transcriptome of the sea urchin embryo. Science 314, 960–962 (2006).
Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster . Science 306, 655–660 (2004).
Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster . Science 27, 2270–2275 (2002).
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Yuh, C.H., Bolouri, H. & Davidson, E.H. Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128, 617–629 (2001).
Wikramanayake, A.H. et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–450 (2003).
Henry, J.Q., Perry, K.J., Wever, J., Seaver, E. & Martindale, M.Q. Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus . Dev. Biol (2008).
Logan, C.Y., Miller, J.R., Ferkowicz, M.J. & McClay, D.R. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126, 345–357 (1999).
Range, R.C., Venuti, J.M. & McClay, D.R. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev. Biol. 279, 252–267 (2005).
Barolo, S., Stone, T., Bang, A.G. & Posakony, J.W. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to suppressor of Hairless. Genes Dev. 16, 1964–1976 (2002).
Revilla-i-Domingo, R., Oliveri, P. & Davidson, E.H. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc. Natl. Acad. Sci. USA 104, 12383–12388 (2007).
Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).
Draper, B.W., Morcos, P.A. & Kimmel, C.B. Inhibition of zebrafish fgf8 Pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154–156 (2001).
Oliveri, P., Walton, K.D., Davidson, E.H. & McClay, D.R. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133, 4173–4181 (2006).
Angerer, L.M. et al. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 128, 4393–4404 (2001).
Yaguchi, S., Yaguchi, J., Angerer, R.C. & Angerer, L.M. A Wnt-FoxQ2-Nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev. Cell 14, 97–107 (2008).
Li, X., Wikramanayake, A.H. & Klein, W.H. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling. Dev. Biol. 212, 425–439 (1999).
Beh, J., Shi, W., Levine, M., Davidson, B. & Christiaen, L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis . Development 134, 3297–3305 (2007).
Coffman, J.A. & Davidson, E.H. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev. Biol. 230, 18–28 (2001).
Hall, D.B. & Struhl, K. The VP16 activation domain interacts with multiple transcriptional components as determined by protein–protein cross-linking in vivo . J. Biol. Chem. 277, 46043–46050 (2002).
Sherwood, D.R. & McClay, D.R. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126, 1703–1713 (1999).
Fernandez-Serra, M., Consales, C., Livigni, A. & Arnone, M.I. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev. Biol. 268, 384–402 (2004).
Clyde, D.E. et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila . Nature 426, 849–853 (2003).
Nemer, M., Rondinelli, E., Infante, D. & Infante, A.A. Polyubiquitin RNA characteristics and conditional induction in sea urchin embryos. Dev. Biol. 145, 255–265 (1991).
Wang, D.G., Britten, R.J. & Davidson, E.H. Maternal and embryonic provenance of a sea urchin embryo transcription factor, SpZ12-1. Mol. Mar. Biol. Biotechnol. 4, 148–153 (1995).
Wong, M.L. & Medrano, J.F. Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85 (2005).
Baugh, L.R. et al. The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development 132, 1843–1854 (2005).
Geiss, G.K. et al. The NanoString nCounter System: a sensitive, digital technology for direct multiplexed measurement of gene expression. Nat. Biotechnol. 36, 317–325 (2008).
Bolouri, H. & Davidson, E.H. Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA 100, 9371–9376 (2003).
Longabaugh, W.J., Davidson, E.H. & Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev. Biol. 283, 1–16 (2005).
Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
Jaffe, L.A. & Terasaki, M. Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol. 74, 219–242 (2004).
Bottger, S.A., Walker, C.W. & Unuma, T. Care and maintenance of adult echinoderms. Methods Cell Biol. 74, 17–38 (2004).
Ransick, A. Detection of mRNA by in situ hybridization and RT-PCR. Methods Cell Biol. 74, 601–620 (2004).
Rast, J.P. et al. Recovery of developmentally defined gene sets from high-density cDNA macroarrays. Dev Biol. 228, 270–286 (2000).
Minokawa, T., Rast, J.P., Arenas-Mena, C., Franco, C.B. & Davidson, E.H. Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr. Patterns 4, 449–456 (2004).
Hinman, V.F., Nguyen, A.T., Cameron, R.A. & Davidson, E.H. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl. Acad. Sci. USA 100, 13356–13361 (2003).
Minokawa, T., Wikramanayake, A.H. & Davidson, E.H. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev. Biol. 288, 545–558 (2005).
Ransick, A. & Davidson, E.H. cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev. Biol. 297, 587–602 (2006).
Revilla-i-Domingo, R., Minokawa, T. & Davidson, E.H. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev. Biol. 274, 438–451 (2004).
Yuh, C.H., Dorman, E.R., Howard, M.L. & Davidson, E.H. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev. Biol. 269, 536–551 (2004).
Oliveri, P., Davidson, E.H. & McClay, D.R. Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Dev. Biol. 258, 32–43 (2003).
Acknowledgements
We thank Eric Davidson in whose lab this protocol was established for many interesting and insightful discussions. Many thanks also to Jonathan Rast, Isabelle Peter, Joel Smith and Andy Cameron for their help in preparing this manuscript. We are grateful for helpful suggestions from our anonymous reviewers. This research was supported by NIH grant HD-37105.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Materna, S., Oliveri, P. A protocol for unraveling gene regulatory networks. Nat Protoc 3, 1876–1887 (2008). https://doi.org/10.1038/nprot.2008.187
Published:
Issue Date:
DOI: https://doi.org/10.1038/nprot.2008.187
This article is cited by
-
Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development
Nature Communications (2020)
-
A biochemical network modeling of a whole-cell
Scientific Reports (2020)
-
Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution
Genome Biology (2018)
-
A gene regulatory network controlling the embryonic specification of endoderm
Nature (2011)
-
Primary analysis of QTG contribution to heterosis in upland cotton
Chinese Science Bulletin (2010)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.