Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of biotin–AMP conjugate for 5′ biotin labeling of RNA through one-step in vitro transcription

Abstract

Biotin-labeled RNA has found broad applications in chemistry, biology and biomedicine. In this protocol, we describe a simple procedure for 5′ RNA biotin labeling by one-step in vitro transcription. A biotin–AMP (adenosine 5′-monophosphate) conjugate, biotin-HDAAMP (adenosine 5′-(6-aminohexyl) phosphoramide; where HDA is 1,6-hexanediamine), is chemically synthesized. Transcription initiation by biotin-HDAAMP under the T7 φ2.5 promoter produces 5′ biotin-labeled RNA with high labeling efficiency. The procedure is especially useful for biotin labeling of RNA that is larger than 60 nucleotides. In addition, the protocol provides an attractive alternative to chemical synthesis of biotin-labeled small RNA of less than 60 nucleotides, particularly when the desired quantity of RNA is low. The whole procedure, from chemical syntheses to isolated biotin-labeled RNA, can be completed within 2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of two T7 promoters φ2.5 and φ6.5.
Figure 2: Procedure for biotin labeling of RNA by in vitro transcription and analysis of RNA labeling efficiency by PAGE.
Figure 3: Scheme for the chemical synthesis of the transcription initiator biotin-HDAAMP.
Figure 4: HPLC analysis of HDAAMP synthesis from HDA and AMP in the presence of EDAC after 90 min reaction at room temperature.
Figure 5: HPLC analysis of biotin-HDAAMP synthesis from biotin-NHS and HDAAMP after 5 h reaction at room temperature.
Figure 6: Purification of biotin-HDAAMP by semipreparative HPLC: column—Alltech Econosphere C18, 10 mm × 250 mm, flow rate—5 ml min−1.
Figure 7: HPLC analysis of biotin-HDAAMP purity.
Figure 8
Figure 9: Gel image of optimization of DNA template preparation by PCR amplification.
Figure 10: PAGE analysis of RNA biotin-labeling efficiency under different transcription conditions.
Figure 11: Separation of biotin-labeled 100 nt RNA from unlabeled pppRNA by 40-cm-long denaturing PAGE (8%).

Similar content being viewed by others

References

  1. Ha, T. et al. Ligand-induced conformational changes observed in single RNA molecules. Proc. Natl. Acad. Sci. USA 96, 9077–9082 (1999).

    Article  CAS  Google Scholar 

  2. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  Google Scholar 

  3. Zhuang, X. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002).

    Article  CAS  Google Scholar 

  4. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  5. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    Article  CAS  Google Scholar 

  6. Lee, T.H., Blanchard, S.C., Kim, H.D., Puglisi, J.D. & Chu, S. The role of fluctuations in tRNA selection by the ribosome. Proc. Natl. Acad. Sci. USA 104, 13661–13665 (2007).

    Article  CAS  Google Scholar 

  7. Ptushkina, M., von der Haar, T., Karim, M.M., Hughes, J.M. & McCarthy, J.E. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J. 18, 4068–4075 (1999).

    Article  CAS  Google Scholar 

  8. von Der Haar, T., Ball, P.D. & McCarthy, J.E. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-Cap by domains of eIF4G. J. Biol. Chem. 275, 30551–30555 (2000).

    Article  CAS  Google Scholar 

  9. Ptushkina, M. et al. A second eIF4E protein in Schizosaccharomyces pombe has distinct eIF4G-binding properties. Nucleic Acids Res. 29, 4561–4569 (2001).

    Article  CAS  Google Scholar 

  10. Marsden, S., Nardelli, M., Linder, P. & McCarthy, J.E. Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J. Mol. Biol. 361, 327–335 (2006).

    Article  CAS  Google Scholar 

  11. Schwartz, A., Margeat, E., Rahmouni, A.R. & Boudvillain, M. Transcription termination factor rho can displace streptavidin from biotinylated RNA. J. Biol. Chem. 282, 31469–31476 (2007).

    Article  CAS  Google Scholar 

  12. Bauman, J.G. & Bentvelzen, P. Flow cytometric detection of ribosomal RNA in suspended cells by fluorescent in situ hybridization. Cytometry 9, 517–524 (1988).

    Article  CAS  Google Scholar 

  13. Giaid, A. et al. Non-isotopic RNA probes. Comparison between different labels and detection systems. Histochemistry 93, 191–196 (1989).

    Article  CAS  Google Scholar 

  14. Smith, M.D., Triantafillou, S., Parker, A., Wikaningrum, R. & Coleman, M. A nonradioactive method of in situ hybridization that uses riboprobes and paraffin-embedded tissue and its combination with immunohistochemistry. Diagn. Mol. Pathol. 6, 34–41 (1997).

    Article  CAS  Google Scholar 

  15. Furtado, L.M., Su, H., Thompson, M., Mack, D.P. & Hayward, G.L. Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector. Anal. Chem. 71, 1167–1175 (1999).

    Article  CAS  Google Scholar 

  16. Minunni, M., Tombelli, S., Gullotto, A., Luzi, E. & Mascini, M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens. Bioelectron. 20, 1149–1156 (2004).

    Article  CAS  Google Scholar 

  17. Kirby, R. et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem. 76, 4066–4075 (2004).

    Article  CAS  Google Scholar 

  18. Tombelli, S., Minunni, M., Luzi, E. & Mascini, M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 67, 135–141 (2005).

    Article  CAS  Google Scholar 

  19. Collett, J.R. et al. Functional RNA microarrays for high-throughput screening of antiprotein aptamers. Anal. Biochem. 338, 113–123 (2005).

    Article  CAS  Google Scholar 

  20. Cho, E.J., Collett, J.R., Szafranska, A.E. & Ellington, A.D. Optimization of aptamer microarray technology for multiple protein targets. Anal. Chim. Acta. 564, 82–90 (2006).

    Article  CAS  Google Scholar 

  21. Bini, A., Centi, S., Tombelli, S., Minunni, M. & Mascini, M. Development of an optical RNA-based aptasensor for C-reactive protein. Anal. Bioanal. Chem. 390, 1077–1086 (2008).

    Article  CAS  Google Scholar 

  22. Rouault, T.A., Hentze, M.W., Haile, D.J., Harford, J.B. & Klausner, R.D. The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proc. Natl. Acad. Sci. USA 86, 5768–5772 (1989).

    Article  CAS  Google Scholar 

  23. Ravelet, C., Grosset, C. & Peyrin, E. Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J. Chromatogr. A 1117, 1–10 (2006).

    Article  CAS  Google Scholar 

  24. Hutanu, D. & Remcho, V.T. Aptamers as molecular recognition elements in chromatographic separations. Adv. Chromatogr. 45, 173–196 (2007).

    Article  CAS  Google Scholar 

  25. Nair, T.M., Myszka, D.G. & Davis, D.R. Surface plasmon resonance kinetic studies of the HIV TAR RNA kissing hairpin complex and its stabilization by 2-thiouridine modification. Nucleic Acids Res. 28, 1935–1940 (2000).

    Article  CAS  Google Scholar 

  26. Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I.J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  CAS  Google Scholar 

  27. Tinoco, I. Jr., Li, P.T. & Bustamante, C. Determination of thermodynamics and kinetics of RNA reactions by force. Q. Rev. Biophys. 39, 325–360 (2006).

    Article  CAS  Google Scholar 

  28. Chu, T.C., Twu, K.Y., Ellington, A.D. & Levy, M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006).

    Article  Google Scholar 

  29. Levy, M., Cater, S.F. & Ellington, A.D. Quantum-dot aptamer beacons for the detection of proteins. Chembiochem. 6, 2163–2166 (2005).

    Article  CAS  Google Scholar 

  30. Liang, R.Q. et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 33, e17 (2005).

    Article  Google Scholar 

  31. Pitulle, C., Kleineidam, R.G., Sproat, B. & Krupp, G. Initiator oligonucleotides for the combination of chemical and enzymatic RNA synthesis. Gene 112, 101–105 (1992).

    Article  CAS  Google Scholar 

  32. Huang, F., Wang, G., Coleman, T. & Li, N. Synthesis of adenosine derivatives as transcription initiators and preparation of 5′ fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA 9, 1562–1570 (2003).

    Article  CAS  Google Scholar 

  33. Langer, P.R., Waldrop, A.A. & Ward, D.C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637 (1981).

    Article  CAS  Google Scholar 

  34. Theissen, G., Richter, A. & Lukacs, N. Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal. Biochem. 179, 98–105 (1989).

    Article  CAS  Google Scholar 

  35. Steen, R., Dahlberg, A.E., Lade, B.N., Studier, F.W. & Dunn, J.J. T7 RNA polymerase directed expression of the Escherichia coli rrnB operon. EMBO J. 5, 1099–1103 (1986).

    Article  CAS  Google Scholar 

  36. Forghani, B., Yu, G.J. & Hurst, J.W. Comparison of biotinylated DNA and RNA probes for rapid detection of varicella-zoster virus genome by in situ hybridization. J. Clin. Microbiol. 29, 583–591 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Williamson, D., Cann, M.J. & Hodgson, D.R. Synthesis of 5′-amino-5′-deoxyguanosine-5′-N-phosphoramidate and its enzymatic incorporation at the 5′-termini of RNA molecules. Chem. Commun. 5096–5098 (2007).

  38. Kinoshita, Y., Nishigaki, K. & Husimi, Y. Fluorescence-, isotope- or biotin-labeling of the 5′-end of single-stranded DNA/RNA using T4 RNA ligase. Nucleic Acids Res. 25, 3747–3748 (1997).

    Article  CAS  Google Scholar 

  39. Martin, G. & Keller, W. Tailing and 3′-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4, 226–230 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosemeyer, V., Laubrock, A. & Seibl, R. Nonradioactive 3′-end-labeling of RNA molecules of different lengths by terminal deoxynucleotidyltransferase. Anal. Biochem. 224, 446–449 (1995).

    Article  CAS  Google Scholar 

  41. Matsuki, T., Ito, R., Yokogawa, T. & Nishikawa, K. Sequence analysis of low-molecular-weight RNAs by the use of non-radioactive labeling. Nucleic Acids Symp. Ser. 29, 75–76 (1993).

    CAS  Google Scholar 

  42. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  43. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  44. Huang, F., Bugg, C.W. & Yarus, M. RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39, 15548–15555 (2000).

    Article  CAS  Google Scholar 

  45. Huang, F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 31, e8 (2003).

    Article  Google Scholar 

  46. Moriyama, K., Kimoto, M., Mitsui, T., Yokoyama, S. & Hirao, I. Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs. Nucleic Acids Res. 33, e129 (2005).

    Article  Google Scholar 

  47. Hirao, I. et al. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3, 729–735 (2006).

    Article  CAS  Google Scholar 

  48. Zhang, L., Sun, L., Cui, Z., Gottlieb, R.L. & Zhang, B. 5′-Sulfhydryl-modified RNA: initiator synthesis, in vitro transcription, and enzymatic incorporation. Bioconjug. Chem. 12, 939–948 (2001).

    Article  CAS  Google Scholar 

  49. Dunn, J.J. & Studier, F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535 (1983).

    Article  CAS  Google Scholar 

  50. Pleiss, J.A., Derrick, M.L. & Uhlenbeck, O.C. T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  51. Helm, M., Brule, H., Giege, R. & Florentz, C. More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5, 618–621 (1999).

    Article  CAS  Google Scholar 

  52. Coleman, T.M., Wang, G. & Huang, F. Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res. 32, e14 (2004).

    Article  Google Scholar 

  53. Li, N., Yu, C. & Huang, F. Novel cyanine–AMP conjugates for efficient 5′ RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res. 33, e37 (2005).

    Article  Google Scholar 

  54. Guo, S., Huang, F. & Guo, P. Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther. 13, 814–820 (2006).

    Article  CAS  Google Scholar 

  55. Delius, H., van Heerikhuizen, H., Clarke, J. & Koller, B. Separation of complementary strands of plasmid DNA using the biotin–avidin system and its application to heteroduplex formation and RNA/DNA hybridizations in electron microscopy. Nucleic Acids Res. 13, 5457–5469 (1985).

    Article  CAS  Google Scholar 

  56. Chapman, K.B. & Szostak, J.W. Isolation of a ribozyme with 5′–5′ ligase activity. Chem. Biol. 2, 325–333 (1995).

    Article  CAS  Google Scholar 

  57. Lohse, P.A. & Szostak, J.W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).

    Article  CAS  Google Scholar 

  58. Coleman, T.M. & Huang, F. RNA-catalyzed thioester synthesis. Chem. Biol. 9, 1227–1236 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a NASA grant NNX07AI98G. We thank Adam York for NMR characterization of biotin-HDAAMP. Previous members of our laboratory, Guocan Wang, Tricia Coleman and Na Li made contributions to the development of the current protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., He, J., Zhang, Y. et al. Synthesis of biotin–AMP conjugate for 5′ biotin labeling of RNA through one-step in vitro transcription. Nat Protoc 3, 1848–1861 (2008). https://doi.org/10.1038/nprot.2008.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.185

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing