Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Gel chromatography and analytical ultracentrifugation to determine the extent of detergent binding and aggregation, and Stokes radius of membrane proteins using sarcoplasmic reticulum Ca2+–ATPase as an example

Abstract

For structural studies of integral membrane proteins, including their 3D crystallization, the judicious use of detergent for solubilization and purification is required. Detergent binding by the solubilized protein is an important parameter to determine the hydrodynamic properties in terms of size and aggregational (monomeric/oligo(proto)meric) state of the protein. Detergent binding can be measured by gel filtration chromatography under equilibrium conditions and after separation from mixed micelles of solubilized lipid and detergent. Using sarcoplasmic reticulum Ca2+-ATPase as an example, we demonstrate in this protocol complete procedures for measurement of detergent binding using (i) radiolabeled n-dodecyl-β-D-maltoside (DM) or (ii) from measurements of the increase in refractive index due to the presence of bound detergent on the protein. The latter measurement can also be performed by sedimentation velocity (SV) analysis in the analytical ultracentrifuge which in addition allows determination of the sedimentation coefficient. In combination with estimation of Stokes radius by gel filtration calibration, the molecular mass and asymmetry of the solubilized protein can be calculated. In the proposed protocols, the gel chromatographic procedures require 1 d; SV experiments are performed just after size exclusion. The whole time for these experiments is 24 h. Data analysis of analytical ultracentrifugation requires a couple of days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow diagram of the procedures used for hydrodynamic characterization of detergent-solubilized Ca2+-ATPase.
Figure 2: Size-exclusion chromatography-HPLC (SEC-HPLC) elution profiles for Ca2+-ATPase and n-dodecyl-β-D-maltoside (DM).
Figure 3: Size-exclusion chromatography-HPLC calibration.
Figure 4: Sedimentation velocity of Ca2+-ATPase from absorbance data at 280 nm (left panels) and interference data (right panels).
Figure 5: Size-exclusion chromatography-HPLC elution profiles for BmrA and n-dodecyl-β-D-maltoside (DM).

Similar content being viewed by others

References

  1. Kragh-Hansen, U., le Maire, M. & Møller, J.V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 75, 2932–2946 (1998).

    Article  CAS  Google Scholar 

  2. le Maire, M., Champeil, P. & Møller, J.V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta. 1508, 86–111 (2000).

    Article  CAS  Google Scholar 

  3. Møller, J.V. & le Maire, M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J. Biol. Chem. 268, 18659–18672 (1993).

    PubMed  Google Scholar 

  4. Lund, S. et al. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 264, 4907–4915 (1989).

    CAS  PubMed  Google Scholar 

  5. Simons, K., Helenius, A. & Garoff, H. Solubilization of the membrane proteins from Semliki Forest virus with Triton X100. J. Mol. Biol. 80, 119–133 (1973).

    Article  CAS  Google Scholar 

  6. Makino, S., Reynolds, J.A. & Tanford, C. The binding of deoxycholate and Triton X-100 to proteins. J. Biol. Chem. 248, 4926–4932 (1973).

    CAS  PubMed  Google Scholar 

  7. Eiselé, J.L. & Rosenbusch, J.P. Crystallization of porin using short chain phospholipids. J. Mol. Biol. 206, 209–212 (1989).

    Article  Google Scholar 

  8. Reiss-Husson, F. & Picot, D. Crystallization of membrane proteins. In Crystallization of Nucleic Acids and Proteins: A Practical Approach, 2nd edn. (eds. Ducruix, A. & Giegé, R.) 246–268 (Oxford University Press, Oxford, UK, 1999).

    Google Scholar 

  9. Dahout-Gonzalez, C., Brandolin, G. & Pebay-Peyroula, E. Crystallization of the bovine ADP/ATP carrier is critically dependent upon the detergent-to-protein ratio. Acta Crystallogr. D Biol. Crystallogr. 59, 2353–2355 (2003).

    Article  Google Scholar 

  10. Jidenko, M. et al. Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 102, 11687–11691 (2005).

    Article  CAS  Google Scholar 

  11. Champeil, P., Menguy, T., Tribet, C., Popot, J.L. & le Maire, M. Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275, 18623–18637 (2000).

    Article  CAS  Google Scholar 

  12. Ebel, C., Møller, J.V. & le Maire, M. Analytical ultra centrifugation: membrane protein assemblies in the presence of detergent. In Biophysical Analysis of Membrane Proteins. Investigating Structure And Function (ed. Pebay-Peyroula, E.) 91–120 (Wiley, Weinheim, 2007).

    Google Scholar 

  13. Salvay, A.G., Santamaria, M., le Maire, M. & Ebel, C. Analytical ultracentrifugation sedimentation velocity for the characterization of detergent-solubilized membrane proteins Ca.-ATPase and ExbB. J. Biol. Phys. (in the press) doi: 10.1007/s10867-008-9058-3 (2008).

  14. le Maire, M., Kwee, S., Andersen, J.P. & Møller, J.V. Mode of interaction of polyoxyethyleneglycol detergents with membrane proteins. Eur. J. Biochem. 129, 525–532 (1983).

    Article  CAS  Google Scholar 

  15. le Maire, M., Aggerbeck, L.P., Monteilhet, C., Andersen, J.P. & Møller, J.V. The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards. Anal. Biochem. 154, 525–535 (1986).

    Article  CAS  Google Scholar 

  16. le Maire, M., Viel, A. & Møller, J.V. Size exclusion chromatography and universal calibration of gel columns. Anal. Biochem. 177, 50–56 (1989).

    Article  CAS  Google Scholar 

  17. Boulanger, P. et al. Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry 35, 14216–14224 (1996).

    Article  CAS  Google Scholar 

  18. Plancon, L. et al. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J. Mol. Biol. 318, 557–569 (2002).

    Article  CAS  Google Scholar 

  19. Winstone, T.L. et al. Organic solvent extracted EmrE solubilized in dodecyl maltoside is monomeric and binds drug ligand. Biochem. Biophys. Res. Commun. 327, 437–445 (2005).

    Article  CAS  Google Scholar 

  20. Ravaud, S. et al. The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. Biochem. J. 395, 345–353 (2006).

    Article  CAS  Google Scholar 

  21. Urbani, A. & Warne, T. A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research. Anal. Biochem. 336, 117–124 (2005).

    Article  CAS  Google Scholar 

  22. Yernool, D., Boudker, O., Folta-Stogniew, E. & Gouaux, E. Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus . Biochemistry 42, 12981–12988 (2003).

    Article  CAS  Google Scholar 

  23. Friesen, R.H., Knol, J. & Poolman, B. Quaternary structure of the lactose transport protein of streptococcus thermophilus in the detergent-solubilized and membrane-reconstituted state. J. Biol. Chem. 275, 40658 (2000).

    CAS  PubMed  Google Scholar 

  24. Butler, P.J., Ubarretxena-Belandia, I., Warne, T. & Tate, C.G. The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J. Mol. Biol. 340, 797–808 (2004).

    Article  CAS  Google Scholar 

  25. Bamber, L., Harding, M., Butler, P.J. & Kunji, E.R. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc. Natl. Acad. Sci. USA 103, 16224–16229 (2006).

    Article  CAS  Google Scholar 

  26. Eriks, L.R., Mayor, J.A. & Kaplan, R.S. A strategy for identification and quantification of detergents frequently used in the purification of membrane proteins. Anal. Biochem. 323, 234–241 (2003).

    Article  CAS  Google Scholar 

  27. Deng, G., Chow, D. & Sanyal, G. Quantitative determination of saccharide surfactants in protein samples by liquid chromatography coupled to electrospray ionization mass spectrometry. Anal. Biochem. 289, 124–129 (2001).

    Article  CAS  Google Scholar 

  28. Maezawa, S. et al. Determination of molecular weight of membrane proteins by the use of low-angle laser light scattering combined with high-performance gel chromatography in the presence of a non-ionic surfactant. Biochim. Biophys. Acta. 747, 291–297 (1983).

    Article  CAS  Google Scholar 

  29. Hayashi, Y., Matsui, H. & Takagi, T. Membrane protein molecular weight determined by low-angle laser light-scattering photometry coupled with high-performance gel chromatography. Methods Enzymol. 172, 514–528 (1989).

    Article  CAS  Google Scholar 

  30. Salvay, A.G. & Ebel, C. Analytical ultracentrifuge for the characterization of detergent in solution. Prog. Colloid Polym. Sci. 131, 74–82 (2006).

    Article  CAS  Google Scholar 

  31. Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).

    Article  CAS  Google Scholar 

  32. Csúcs, G. & Ramsden, J.J. Solubilization of planar bilayers with detergent. Biochim. Biophys. Acta. 1369, 304–308 (1998).

    Article  Google Scholar 

  33. Strop, P. & Brunger, A.T. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci. 14, 2207–2211 (2005).

    Article  CAS  Google Scholar 

  34. Tanford, C., Nozaki, Y., Reynolds, J.A. & Makino, S. Molecular characterization of proteins in detergent solutions. Biochemistry 13, 2369–2376 (1974).

    Article  CAS  Google Scholar 

  35. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

  36. Edelstein, S.J. & Schachman, H.K. Measurement of partial specific volume by sedimentation equilibrium in H2O-D2O solutions. Methods Enzymol. 27, 82–98 (1973).

    Article  CAS  Google Scholar 

  37. Reynolds, J.A. & Tanford, C. Determination of molecular weight of the protein moiety in protein-detergent complexes without direct knowledge of detergent binding. Proc. Natl. Acad. Sci. USA 73, 4467–4470 (1976).

    Article  CAS  Google Scholar 

  38. Burgess, N.K., Stanley, A.M. & Fleming, K.G. Determination of membrane protein molecular weights and association equilibrium constants using sedimentation equilibrium and sedimentation velocity. Methods Cell Biol. 84, 181–211 (2008).

    Article  CAS  Google Scholar 

  39. Butler, P.J.P. & Tate, C.G. Correcting the buoyancy of macromolecules: density increments and apparent partial specific volumes with particular reference to the study of membrane proteins. In Modern Analytical Ultracentrifugation: Techniques and Methods (eds. Scott, D.J., Harding, S.E. & Rowe, A.J.) 133–151 (The Royal Society of Chemistry, Cambridge, 2006).

    Google Scholar 

  40. Kragh-Hansen, U., le Maire, M., Noel, J.P., Gulik-Krzywicki, T. & Møller, J.V. Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry 32, 1648–1656 (1993).

    Article  CAS  Google Scholar 

  41. Georgin, D., le Maire, M. & Noël, J.P. Syntheses of [14C]-detergents. J. Labelled Comp. Radiopharm. 44, 575–585 (2001).

    Article  CAS  Google Scholar 

  42. de Foresta, B. et al. Membrane solubilization by detergent: use of brominated phospholipids to evaluate the detergent-induced changes in Ca2+-ATPase/lipid interaction. Biochemistry 28, 2558–2567 (1989).

    Article  CAS  Google Scholar 

  43. le Maire, M., Chabaud, R. & Hervé, G. Laboratory Guide to Biochemistry, Enzymology, and Protein Physical Chemistry (Plenum Publishing Corporation, New York, 1991).

    Book  Google Scholar 

  44. Peterson, G.L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal. Biochem. 100, 201–220 (1979).

    Article  CAS  Google Scholar 

  45. Kaplan, R.S. & Pedersen, P.L. Sensitive protein assay in presence of high levels of lipid. Methods Enzymol. 172, 393–399 (1989).

    Article  CAS  Google Scholar 

  46. Bartlett, G.R. Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468 (1959).

    CAS  PubMed  Google Scholar 

  47. Josse, D. et al. Oligomeric states of the detergent-solubilized human serum paraoxonase (PON1). J. Biol. Chem. 277, 33386–33397 (2002).

    Article  CAS  Google Scholar 

  48. Cohen, E. et al. Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions. J. Biol. Chem. 280, 16610–16618 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded in part by grants from the Commissariat à l'Energie Atomique program Signalisation et transport membranaires (to M.l.M. and C.E.) and in part by an Agence Nationale de la Recherche grant (ANR-06-BLAN-0239-01) (to M.l.M.), by the Danish Medical Research Council, Aarhus University Research Foundation, and The Vilhelm Pedersen Foundation (to J.V.M.) and a Ph.D. stipend to C.O. from the Medical Faculty, Aarhus University. This protocol was improved over the years, in particular, thanks to the biennial EMBO Practical Course 'Current Methods in Membrane Protein Research' at The European Molecular Biology Laboratory, Heidelberg, Germany, organized in part by the late Matti Saraste to whom we would like to dedicate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc le Maire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

le Maire, M., Arnou, B., Olesen, C. et al. Gel chromatography and analytical ultracentrifugation to determine the extent of detergent binding and aggregation, and Stokes radius of membrane proteins using sarcoplasmic reticulum Ca2+–ATPase as an example. Nat Protoc 3, 1782–1795 (2008). https://doi.org/10.1038/nprot.2008.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.177

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing