Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants

Abstract

We provide a protocol that describes an explant system that allows the dynamics of motor axons to be imaged. This method is based on nerve–muscle explants prepared from the triangularis sterni muscle of mice, a thin muscle that covers the inside of the thorax. These explants, which can be maintained alive for several hours, contain long stretches of peripheral motor axons including their terminal arborizations and neuromuscular junctions. Explants can be prepared from transgenic mouse lines that express fluorescent proteins in neurons or glial cells, which enables direct visualization of their cellular and subcellular morphology by fluorescence microscopy. Time-lapse imaging then provides a convenient and reliable approach to follow the dynamic behavior of motor axons, their surrounding glial cells and their intracellular organelles with high temporal and spatial resolution. Triangularis sterni explants can be prepared in 15 min, imaged ex vivo for several hours and processed for immunohistochemistry in about 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innervation pattern of the triangularis sterni muscle.
Figure 2: High-resolution images from living triangularis sterni explants prepared as described in this protocol.
Figure 3: The preparation of the triangularis sterni explant.
Figure 4: Quality criteria for ex vivo imaging of neuromuscular synapses.

Similar content being viewed by others

References

  1. McArdle, J.J. et al. Advantages of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena. J. Neurosci. Methods 4, 109–115 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Brigant, J.L. & Mallart, A. Presynaptic currents in mouse motor endings. J. Physiol. 333, 619–636 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Angaut-Petit, D. & Mallart, A. Electrical activity of mouse motor endings during muscle reinervation. Neurosci. 16, 1047–1056 (1985).

    Article  CAS  Google Scholar 

  4. Angaut-Petit, D. et al. Electrophysiological and morphological studies of a motor nerve in 'motor endplate disease' of the mouse. Proc. Soc. Lond. B Biol. Sci. 215, 117–125 (1982).

    Article  CAS  Google Scholar 

  5. Bournaud, R. & Mallart, A. Potassium channel blockers and impulse propagation in murine motor endplate disease. Muscle Nerve 10, 1–5 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Misgeld, T., Kerschensteiner, M., Bareyre, F.M., Burgess, R.W. & Lichtman, J.W. Imaging axonal transport of mitochondria in vivo. Nat. Methods 4, 559–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Duron, B., Jung-Caillol, M.C. & Marlot, D. Myelinated nerve fiber supply and muscle spindles in the respiratory muscles of cat: quantitative study. Anat. Embryol. (Berl) 152, 171–192 (1978).

    Article  CAS  Google Scholar 

  9. Keller-Peck, C.R. et al. Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31, 381–394 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  Google Scholar 

  11. Parson, S.H. et al. Axotomy-dependent and -independent synapse elimination in organ cultures of Wld(s) mutant mouse skeletal muscle. J. Neurosci. Res. 76, 64–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Walsh, M.K. & Lichtman, J.W. Imaging the development of the neuromuscular junction. In Imaging in Neuroscience and Development (eds. Yuste, R. & Konnerth, A.) 215–223 (2005).

    Google Scholar 

  13. Walsh, M.K. & Lichtman, J.W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    Article  CAS  Google Scholar 

  14. Schaefer, A.M., Sanes, J.R. & Lichtman, J.W. A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J. Comp. Neurol. 490, 209–219 (2005).

    Article  PubMed  Google Scholar 

  15. Sanes, J.R. & Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  16. Lichtman, J.W. & Sanes, J.R. Watching the neuromuscular junction. J. Neurocytol. 32, 767–775 (2003).

    Article  CAS  Google Scholar 

  17. Lichtman, J.W. & Colman, H. Synapse elimination and indelible memory. Neuron 25, 269–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  19. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Zuo, Y. et al. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J. Neurosci. 24, 10999–11009 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi, S., Wakabayashi-Takai, E., Sasaoka, T. & Ozawa, E. Analysis of the spatial, temporal and tissue-specific transcription of gamma-sarcoglycan gene using a transgenic mouse. FEBS Lett. 495, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marques, M.J., Conchello, J.A. & Lichtman, J.W. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 20, 3663–3675 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Parson, S.H., Mackintosh, C.L. & Ribchester, R.R. Elimination of motor nerve terminals in neonatal mice expressing a gene for slow Wallerian degeneration (C57Bl/Wlds). Eur. J. Neurosci. 9, 1586–1592 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Wyatt, R.M. & Balice-Gordon, R.J. Heterogeneity in synaptic vesicle release at neuromuscular synapses of mice expressing synaptopHluorin. J. Neurosci. 28, 325–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lichtman, J.W., Magrassi, L. & Purves, D. Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 1215–1222 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Mauermayer (Technical University, Munich) for help with the photographs, and J.R. Sanes (Harvard University) for first pointing us to J.J. McArdle's work on the triangularis sterni muscle, which is the basis for the explant system described here. Work in M.K.'s laboratory is financed through grants from the Deutsche Forschungsgemeinschaft (DFG; Emmy-Noether Program and SFB 571), the Hertie-Foundation and the 'Verein Therapieforschung für MS-Kranke e.V.'. M.R. is supported by a predoctoral fellowship of the International Research Training Group 1373 'Brain Signalling: From Neurons to Circuits'. T.M. is supported by the Institute of Advanced Studies (Technical University, Munich), by the Alexander-von-Humboldt-Foundation, the DFG, the Hertie-Foundation and the Center of Integrated Protein Science, Munich. Work on MitoMice was also supported by a grant from the Dana-Foundation to T.M. and M.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Kerschensteiner or Thomas Misgeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerschensteiner, M., Reuter, M., Lichtman, J. et al. Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants. Nat Protoc 3, 1645–1653 (2008). https://doi.org/10.1038/nprot.2008.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing