Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis

Abstract

The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode, Caenorhabditis elegans. We discuss how to design appropriate C. elegans BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2–3 weeks to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the bimolecular fluorescence complementation assay.
Figure 2: Schematic view of worm bimolecular fluorescence complementation (BiFC) cloning vectors.

Similar content being viewed by others

References

  1. Periasamy, A. & Day, R.N. Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods Cell Biol. 58, 293–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Rossi, F.M., Blakely, B.T., Charlton, C.A. & Blau, H.M. Monitoring protein-protein interactions in live mammalian cells by beta-galactosidase complementation. Methods Enzymol. 328, 231–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Michnick, S.W., Remy, I., Campbell-Valois, F.X., Vallee-Belisle, A. & Pelletier, J.N. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328, 208–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Luker, K.E. & Piwnica-Worms, D. Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol. 385, 349–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kerppola, T.K. Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449–456 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel lucine zipper-directed protein reassembly: applications to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  8. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shyu, Y.J., Liu, H., Deng, X. & Hu, C.D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jach, G., Pesch, M., Richter, K., Frings, S. & Uhrig, J.F. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3, 597–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Paulmurugan, R. & Gambhir, S.S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal. Chem. 75, 1584–1589 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michnick, S.W., Ear, P.H., Manderson, E.N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 6, 569–582 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kerppola, T.K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson, C.G., Magliery, T.J. & Regan, L. Detecting protein-protein interactions with GFP-fragment reassembly. Nat. Methods 1, 255–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saka, Y., Hagemann, A.I., Piepenburg, O. & Smith, J.C. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus. Development 134, 4209–4218 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kaletta, T. & Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Rubin, G.M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blanchard, D., Hutter, H., Fleenor, J. & Fire, A. A differential cytolocalization assay for analysis of macromolecular assemblies in the eukaryotic cytoplasm. Mol. Cell Proteomics 5, 2175–2184 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, B., Liu, Q., Ge, Q., Xie, J. & Wang, Z.W. UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr. Biol. 17, 1334–1339 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, S., Ma, C. & Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Davis, B.O. Jr., Anderson, G.L. & Dusenbery, D.B. Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21, 4089–4095 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Evans, T.C. (ed.) Transformation and microinjection (April 6, 2006). WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.108.1, http://www.wormbook.org.

  27. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahringer, J. (ed.) Reverse genetics (April 6, 2006). WormBook ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.47.1, http://www.wormbook.org.

  30. Gallagher, S.R. One-dimensional SDS gel electrophoresis of proteins. In Current Protocols in Cell Biology (eds. Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J. & Yamada, K.M.) 6.1.1–6.1.34 (John Wiley & Sons, New York, 1998).

    Google Scholar 

  31. Gallagher, S., Winston, S.E., Fuller, S.A. & Hurrell, G.R. Immunoblotting and immunodetection. In Current Protocols in Cell Biology (eds. Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J. & Yamada, K.M.) 6.2.1–6.2.20 (John Wiley & Sons, New York, 1998).

    Google Scholar 

  32. Shyu, Y.J., Suarez, C.D. & Hu, C.D. Visualization of AP-1-NF-κB ternary complexes in living cells by using a BiFC-based FRET. Proc. Natl. Acad. Sci. USA 105, 151–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stringham, E.G., Dixon, D.K., Jones, D. & Candido, E.P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Atsushi Miyawaki for kindly providing cDNAs of Venus, and the members of the Hu laboratory for helpful discussions. R.E.E. was supported by a grant from the American Cancer Society. C.-D.H. was supported by the Purdue Cancer Center (NCI-P30CA23168), Indiana Elks, Walther Cancer Institute and grants from National Science Foundation (0420634-MCB) and American Heart Association (0655570Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Deng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyu, Y., Hiatt, S., Duren, H. et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc 3, 588–596 (2008). https://doi.org/10.1038/nprot.2008.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.16

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing