Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye

Abstract

There is clearly a demand for an experimental platform that enables cell biology to be studied in intact vascularized and innervated tissue in vivo. This platform should allow observations of cells noninvasively and longitudinally at single-cell resolution. For this purpose, we use the anterior chamber of the mouse eye in combination with laser scanning microscopy (LSM). Tissue transplanted to the anterior chamber of the eye is rapidly vascularized, innervated and regains function. After transplantation, LSM through the cornea allows repetitive and noninvasive in vivo imaging at cellular resolution. Morphology, vascularization, cell function and cell survival are monitored longitudinally using fluorescent proteins and dyes. We have used this system to study pancreatic islets, but the platform can easily be adapted for studying a variety of tissues and additional biological parameters. Transplantation to the anterior chamber of the eye takes 25 min, and in vivo imaging 1–5 h, depending on the features monitored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging setup for noninvasive in vivo imaging in the anterior chamber of the eye.
Figure 2: Noninvasive in vivo imaging in the anterior chamber of the eye.
Figure 3: Custom-built stabilizer of the mouse eye for noninvasive in vivo imaging.
Figure 4: Perfusion of the anterior chamber of the mouse eye.
Figure 5: Morphological characterization of a pancreatic islet graft by imaging reflection and GFP.
Figure 6: Imaging of tissue vascularization.
Figure 7: Imaging of cell death.
Figure 8: Loading of cells within the anterior chamber of the eye with calcium indicators.

Similar content being viewed by others

References

  1. Koo, V., Hamilton, P.W. & Williamson, K. Non-invasive in vivo imaging in small animal research. Cell. Oncol. 28, 127–139 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  3. Dunn, K.W. & Sutton, T.A. Functional studies in living animals using multiphoton microscopy. ILAR J. 49, 66–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Handbook of Biological Confocal Microscopy 3rd edn. (ed. Pawley, J.B.) (Springer, New York, 2006).

  5. Adeghate, E., Ponery, A.S., Ahmed, I. & Donath, T. Comparative morphology and biochemistry of pancreatic tissue fragments transplanted into the anterior eye chamber and subcutaneous regions of the rat. Eur. J. Morphol. 39, 257–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Katoh, N. et al. Target-specific innervation by autonomic and sensory nerve fibers in hairy fetal skin transplanted into the anterior eye chamber of adult rat. Cell Tissue Res. 266, 259–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Olson, L. & Seiger, A. Beating intraocular hearts: light-controlled rate by autonomic innervation from host iris. J. Neurobiol. 7, 193–203 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, W., Scott, D.E. & Reiter, R.J. Transplantation of the mammalian pineal gland: studies of survival, revascularization, reinnervation, and recovery of function. Exp. Neurol. 122, 88–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Hoffer, B., Seiger, A., Ljungberg, T. & Olson, L. Electrophysiological and cytological studies of brain homografts in the anterior chamber of the eye: maturation of cerebellar cortex in oculo. Brain Res. 79, 165–184 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Niederkorn, J.Y. Immune privilege in the anterior chamber of the eye. Crit. Rev. Immunol. 22, 13–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Adeghate, E. Pancreatic tissue grafts are reinnervated by neuro-peptidergic and cholinergic nerves within five days of transplantation. Transpl. Immunol. 10, 73–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Adeghate, E. Host-graft circulation and vascular morphology in pancreatic tissue transplants in rats. Anat. Rec. 251, 448–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Speier, S. et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat. Med. 14, 574–578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertera, S. et al. Body window-enabled in vivo multicolor imaging of transplanted mouse islets expressing an insulin-Timer fusion protein. BioTechniques 35, 718–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Martinic, M.M. & von Herrath, M.G. Real-time imaging of the pancreas during development of diabetes. Immunol. Rev. 221, 200–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Zhuravleva, Z.N., Bragin, A.G. & Vinogradova, O.S. Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. I. General characteristic and non-neural elements. J. Hirnforsch. 25, 313–330 (1984).

    CAS  PubMed  Google Scholar 

  17. Adeghate, E. & Donath, T. Distribution of neuropeptide Y and vasoactive intestinal polypeptide immunoreactive nerves in normal and transplanted pancreatic tissue. Peptides 11, 1087–1092 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Boutet de Monvel, J., Le Calvez, S. & Ulfendahl, M. Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys. J. 80, 2455–2470 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Köhler, M. et al. On-line monitoring of apoptosis in insulin-secreting cells. Diabetes 52, 2943–2950 (2003).

    Article  PubMed  Google Scholar 

  20. Berney, T. et al. Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation 71, 125–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nyqvist, D., Köhler, M., Wahlstedt, H. & Berggren, P.O. Donor islet endothelial cells participate in formation of functional vessels within pancreatic islet grafts. Diabetes 54, 2287–2293 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bernd, A.S., Aihara, M., Lindsey, J.D. & Weinreb, R.N. Influence of molecular weight on intracameral dextran movement to the posterior segment of the mouse eye. Invest. Ophthalmol. Vis. Sci. 45, 480–484 (2004).

    Article  PubMed  Google Scholar 

  23. Aynsley-Green, A., Biebuyck, J.F. & Alberti, K.G. Anaesthesia and insulin secretion: the effects of diethyl ether, halothane, pentobarbitone sodium and ketamine hydrochloride on intravenous glucose tolerance and insulin secretion in the rat. Diabetologia 9, 274–281 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, E.T., Umino, Y., Loi, T., Solessio, E. & Barlow, R. Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Vis. Neurosci. 22, 615–618 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Desborough, J.P., Jones, P.M., Persaud, S.J., Landon, M.J. & Howell, S.L. Isoflurane inhibits insulin secretion from isolated rat pancreatic islets of Langerhans. Br. J. Anaesth. 71, 873–876 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants DK-58508 and DK-075487 (to A.C.) from the US National Institutes of Health, Juvenile Diabetes Research Foundation International grant 3-2007-73 (to S.S.) and 4-2004-361, the Swedish Research Council, the Novo Nordisk Foundation, Karolinska Institutet, the Swedish Diabetes Association, The Family Knut and Alice Wallberg Foundation, Eurodia (FP6-518153), European Foundation for the Study of Diabetes, the EFSD/Lilly Research Program, Berth von Kantzow's Foundation, the Family Erling-Persson Foundation and the Diabetes Research Institute Foundation (Hollywood, FL).

Author information

Authors and Affiliations

Authors

Contributions

The first two authors contributed equally to this work.

Corresponding author

Correspondence to Stephan Speier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speier, S., Nyqvist, D., Köhler, M. et al. Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3, 1278–1286 (2008). https://doi.org/10.1038/nprot.2008.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing