Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cultivating previously uncultured soil bacteria using a soil substrate membrane system

Abstract

Most bacteria are recalcitrant to traditional cultivation in the laboratory. The soil substrate membrane system provides a simulated environment for the cultivation of previously undescribed soil bacteria as microcolonies. The system uses a polycarbonate membrane as a solid support for growth and soil extract as the substrate. Diverse microcolonies can be visualized using total bacterial staining combined with fluorescence in situ hybridization (FISH) after 7–10-d incubation. Molecular typing shows that the majority of microcolony-forming bacteria recovered using this protocol were resistant to growth using standard methods. The protocol takes <4 h of bench time over the 10-d period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart for microcultivation using the soil substrate membrane system.
Figure 2: Major steps involved in set up of the soil substrate membrane system.
Figure 3: Epifluorescence microscopy image of microcolony-forming soil bacteria present on growth membranes.

Similar content being viewed by others

References

  1. Leadbetter, J.R. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Green, B.D. & Keller, M. Capturing the uncultivated majority. Curr. Opin. Biotechnol. 17, 236–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Amann, R.I., Ludwig, W. & Schleifer, K.H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hugenholtz, P., Goebel, B.M. & Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keller, M. & Zengler, K. Tapping into microbial diversity. Nat. Rev. Microbiol. 2, 141–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Rappe, M.S., Connon, S.A., Vergin, K.L. & Giovannoni, S.L. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sharma, R., Ranjan, R., Kapardar, R. & Grover, A. 'Unculturable' bacterial diversity: an untapped resource. Curr. Sci. 89, 72–77 (2005).

    CAS  Google Scholar 

  9. Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. & Sait, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sait, M., Hugenholtz, P. & Janssen, P.H. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bollman, A., Lewis, K. & Epstein, S. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73, 6386–6390 (2007).

    Article  Google Scholar 

  12. Connon, S.A. & Giovannoni, S.J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaeberlein, T., Lewis, K. & Epstein, S. Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Zengler, K. et al. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morris, R.M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari, B.C., Binnerup, S.J. & Gillings, M.R. Microcolony cultivation on a soil substrate membrane system recovers previously unculturable bacteria. Appl. Environ. Microbiol. 71, 8714–8720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winding, A., Binnerup, S. & Sørensen, J. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60, 2869–2875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrari, B.C., Tujula, N., Stoner, K. & Kjelleberg, S. Catalyzed reporter deposition-fluorescence in situ hybridization allows for enrichment-independent detection of microcolony-forming soil bacteria. Appl. Environ. Microbiol. 72, 918–922 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Binnerup, S.J. et al. Ribosomal RNA content in microcolony forming soil bacteria measured by quantitative 16S rRNA hybridisation and image analysis. FEMS Microbiol. Ecol. 37, 231–237 (2001).

    Article  CAS  Google Scholar 

  20. Svenning, M.M., Wartiainen, I., Hestnes, A.G. & Binnerup, S.J. Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol. Ecol. 44, 347–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hugenholtz, P., Tyson, G.W., Webb, R.I., Wagner, A.M. & Blackall, L.L. Investigation of candidate division TM7, a recently recognised major lineage of the domain bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67, 411–419 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rasmussen, L. et al. Cultivation of hard-to-culture subsurface mercury resistant bacteria and discovery of new merA gene sequences. Appl. Environ. Microbiol. April 25, e-pub ahead of print (2008).

  23. Watve, M. et al. The 'K' selected oligophilic bacteria: a key to uncultured diversity? Curr. Sci. 78, 1535–1542 (2000).

    Google Scholar 

  24. Simu, K. & Hagstrom, A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 70, 2445–2451 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Powell, S.M., Ferguson, S.H., Snape, I. & Siciliano, S.D. Fertilization stimulates anaerobic fuel degradation of antarctic soils by denitrifying microorganisms. Environ. Sci. Technol. 40, 2011–2017 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Hamamura, N., Olson, S.H., Ward, D.M. & Inskeep, W.P. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl. Environ. Microbiol. 72, 6316–6324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenzaka, T., Yamagaguchi, N., Utrarachkij, F., Suthienkul, O. & Nasu, M. Rapid identification and enumeration of antibiotic resistant bacteria in urban canals by microcolony-fluorescence in situ hybridization. J. Health Sci. 52, 703–710 (2006).

    Article  CAS  Google Scholar 

  28. Hesselsoe, M. et al. Degradation of 4-nonylphenol in homogeneous and nonhomogeneous mixtures of soil and sewage sludge. Environ. Sci. Technol. 35, 3695–3700 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Pernthaler, J., Glockner, F.O., Schonhuber, W. & Amann, R. Fluorescence in situ hybridization. In Methods in Microbiology: Marine Microbiology (ed. Paul, J.H.) 207–226 (Academic Press, London, 2001).

    Chapter  Google Scholar 

  30. Amann, R.I., Krumholz, L. & Stahl, D.A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stahl, D.A. & Amann, R. Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M.) 205–248 (John Wiley and Sons, Chichester, UK, 1991).

    Google Scholar 

  32. Pernthaler, A. & Pernthaler, J. Fluorescence in situ hybridization for the identification of environmental microbes. Methods Mol. Biol. 353, 153–164 (2007).

    PubMed  Google Scholar 

  33. Amann, R. & Fuchs, B. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Tujula, N.A. et al. A CARD-FISH protocol for the identification and enumeration of epiphytic bacteria on marine algae. J. Microbiol. Methods 65, 604–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari, B.C., Power, M.L. & Bergquist, P.L. Closed-tube DNA extraction using a thermostable proteinase is highly sensitive, capable of single parasite detection. Biotechnol. Lett. 29, 1831–1837 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Davey, H.M. & Kell, D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Macquarie University Research Fellowship. We thank Debra Birch for her advice and support with confocal microscopy imaging of microcolonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda C Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, B., Winsley, T., Gillings, M. et al. Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3, 1261–1269 (2008). https://doi.org/10.1038/nprot.2008.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.102

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing