Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Sequencing complete mitochondrial and plastid genomes

Abstract

Organelle genomics has become an increasingly important research field, with applications in molecular modeling, phylogeny, taxonomy, population genetics and biodiversity. Typically, research projects involve the determination and comparative analysis of complete mitochondrial and plastid genome sequences, either from closely related species or from a taxonomically broad range of organisms. Here, we describe two alternative organelle genome sequencing protocols. The “random genome sequencing” protocol is suited for the large majority of organelle genomes irrespective of their size. It involves DNA fragmentation by shearing (nebulization) and blunt-end cloning of the resulting fragments into pUC or BlueScript-type vectors. This protocol excels in randomness of clone libraries as well as in time and cost-effectiveness. The “long-PCR-based genome sequencing” protocol is specifically adapted for DNAs of low purity and quantity, and is particularly effective for small organelle genomes. Library construction by either protocol can be completed within 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: PCR steps involved in the long-PCR-based genome sequencing protocol (protocol option B).
Figure 3: Nebulized and size-separated orgDNA.

Similar content being viewed by others

References

  1. Boer, P.H. & Gray, M.W. Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55, 399–411 (1988).

    Article  CAS  Google Scholar 

  2. Burger, G., Forget, L., Zhu, Y., Gray, M.W. & Lang, B.F. Unique mitochondrial genome architecture in unicellular relatives of animals. Proc. Natl. Acad. Sci. USA 100, 892–897 (2003).

    Article  CAS  Google Scholar 

  3. Marande, W., Lukes, J. & Burger, G. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot. Cell 4, 1137–1146 (2005).

    Article  CAS  Google Scholar 

  4. Gray, M.W. Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55, 227–233 (2003).

    Article  CAS  Google Scholar 

  5. Gray, M.W. & Covello, P.S. RNA editing in plant mitochondria and chloroplasts. FASEB J. 7, 64–71 (1993).

    Article  CAS  Google Scholar 

  6. Michel, F., Jacquier, A. & Dujon, B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  7. Dujon, B., Colleaux, L., Jacquier, A., Michel, F. & Monteilhet, C. Mitochondrial introns as mobile genetic elements: the role of intron-encoded proteins. Basic Life Sci. 40, 5–27 (1986).

    CAS  PubMed  Google Scholar 

  8. Lang, B.F., Gray, M.W. & Burger, G. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33, 351–397 (1999).

    Article  CAS  Google Scholar 

  9. Gray, M.W., Lang, B.F. & Burger, G. Mitochondria of protists. Annu. Rev. Genet. 38, 477–524 (2004).

    Article  CAS  Google Scholar 

  10. Bonen, L. & Vogel, J. The ins and outs of group II introns. Trends Genet. 17, 322–331 (2001).

    Article  CAS  Google Scholar 

  11. Burger, G., Gray, M.W. & Lang, B.F. Mitochondrial genomes—anything goes. Trends Genet. 19, 709–716 (2003).

    Article  CAS  Google Scholar 

  12. Bankier, A.T., Weston, K.M. & Barrell, B.G. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 155, 51–93 (1987).

    Article  CAS  Google Scholar 

  13. Mullis, K.B. & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

  14. Okpodu, C.M., Robertson, D., Boss, W.F., Togasaki, R.K. & Surzycki, S.J. Rapid isolation of nuclei from carrot suspension culture cells using a BioNebulizer. Biotechniques 16, 154–159 (1994).

    CAS  PubMed  Google Scholar 

  15. Surzycki, S. in The International Conference on the Status and Future of Research on the Human Genome. Human Genome II (San Diego, CA), pp.51 (1990).

    Google Scholar 

  16. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  Google Scholar 

  17. Roe, B., Crabtree, J.S. & Khan, A.S. DNA Isolation and Sequencing (John Wiley and Sons, New York, 1996).

    Google Scholar 

  18. Cheng, S., Fockler, C., Barnes, W.M. & Higuchi, R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699 (1994).

    Article  CAS  Google Scholar 

  19. Boore, J.L., Macey, J.R. & Medina, M. Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol. 395, 311–348 (2005).

    Article  CAS  Google Scholar 

  20. Jansen, R.K. et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395, 348–384 (2005).

    Article  CAS  Google Scholar 

  21. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. & Allard, R.W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018 (1984).

    Article  CAS  Google Scholar 

  22. Berntson, E.A., France, S.C. & Mullineaux, L.S. Phylogenetic relationships within the class Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. Mol. Phylogenet. Evol. 13, 417–433 (1999).

    Article  CAS  Google Scholar 

  23. Palumbi,, S.R. in Molecular Phylogenetics (eds. Hillis, D.M., Moritz, C. & Mable, B.K.) 205–247 (Sinauer Associates Inc., Sunderland, MA, 1996).

    Google Scholar 

  24. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  25. Robertson, J.M. & Walsh-Weller, J. An introduction to PCR primer design and optimization of amplification reactions. Methods Mol. Biol. 98, 121–154 (1998).

    CAS  PubMed  Google Scholar 

  26. Lavrov, D.V., Forget, L., Kelly, M. & Lang, B.F. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22, 1231–1239 (2005).

    Article  CAS  Google Scholar 

  27. Wesley, U.V. & Wesley, C.S. Rapid directional walk within DNA clones by step-out PCR. Methods Mol. Biol. 67, 279–285 (1997).

    CAS  PubMed  Google Scholar 

  28. Shao, Z., Graf, S., Chaga, O.Y. & Lavrov, D.V. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381, 92–101 (2006).

    Article  CAS  Google Scholar 

  29. Fire, A. & Xu, S.Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645 (1995).

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, NY, 1989).

    Google Scholar 

  31. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  Google Scholar 

  32. Kocher, T.D. et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86, 6196–6200 (1989).

    Article  CAS  Google Scholar 

  33. Boore, J.L. & Brown, W.M. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17, 87–106 (2000).

    Article  CAS  Google Scholar 

  34. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  35. Lavrov, D.V., Brown, W.M. & Boore, J.L. Phylogenetic position of the Pentastomida and (pan)crustacean relationships. Proc. Biol. Sci. 271, 537–544 (2004).

    Article  Google Scholar 

  36. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

    Article  CAS  Google Scholar 

  37. Kusukawa, N., Uemori, T., Asada, K. & Kato, I. Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques 9, 66–68 70, 72 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shona Teijeiro for critical reading of the manuscript and for help in the preparation of the figures. This work was supported by the Canadian Institute of Health Research (B.F.L., grant MOP-42475; G.B., grant MOP-79309; postdoctoral fellowship to D.V.L.). Interaction support from the Canadian Institute of Advanced Research, Program in Evolutionary Biology (G.B. and B.F.L.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gertraud Burger or B Franz Lang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, G., Lavrov, D., Forget, L. et al. Sequencing complete mitochondrial and plastid genomes. Nat Protoc 2, 603–614 (2007). https://doi.org/10.1038/nprot.2007.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.59

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing