Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays

Abstract

Screening for specific genetic aberrations by fluorescence and chromogenic in situ hybridization (fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH)) can reveal associations with tumor types or subtypes, cellular morphology and clinical behavior. FISH and CISH methodologies are based on the specific annealing (hybridization) of labeled genomic sequences (probes) to complementary nucleic acids within fixed cells to allow their detection, quantification and spatial localization. Formalin-fixed paraffin embedded (FFPE) material is the most widely available source of tumor samples. Increasingly, tissue microarrays (TMAs) consisting of multiple cores of FFPE material are being used to enable simultaneous analyses of many archival samples. Here we describe robust protocols for the FISH and CISH analyses of genetic aberrations in FFPE tissue, including TMAs. Protocols include probe preparation, hybridization and detection. Steps are described to reduce background fluorescence and strip probes for repeat FISH analyses to maximize the use of tissue resources. The basic protocol takes 2–3 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Demonstration of probe copy number analysis in a tissue microarray of rhabdomyosarcoma samples by chromogenic in situ hybridization (CISH) (a and c) for MYC-N (myc myelocytomatosis viral related oncogene, neuroblastoma derived) using 3,3′-diaminobenzidine (DAB) (brown) as a chromogen with hematoxylin counterstain, and by fluorescence in situ hybridization (FISH) (b and d) for FGFR1 (Fibroblast Growth Factor Receptor 1) at 8p11[green/fluorescein isothiocyanate (FITC)] with a control probe MYC-C (v-myc myelocytomatosis viral oncogene homolog) at 8q24 (red/Cy3).
Figure 3: Fluorescence in situ hybridization (FISH) detection of ERG rearrangements.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  Google Scholar 

  3. Slater, O. & Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J. Clin. Pathol. 60, 1187–1194 (2007).

    Article  CAS  Google Scholar 

  4. Hussain, S.A., Palmer, D.H., Spooner, D. & Rea, D.W. Molecularly targeted therapeutics for breast cancer. BioDrugs 21, 215–224 (2007).

    Article  CAS  Google Scholar 

  5. Shipley, J. & Fisher, C. Chromosome translocations in sarcomas and the analysis of paraffin-embedded material. J. Pathol. 184, 1–3 (1998).

    Article  CAS  Google Scholar 

  6. Lambros, M.B., Natrajan, R. & Reis-Filho, J.S. Chromogenic and fluorescent in situ hybridization in breast cancer. Hum. Pathol. 38, 1105–1122 (2007).

    Article  CAS  Google Scholar 

  7. Bramwell, N.H. & Burns, B.F. The effects of fixative type and fixation time on the quantity and quality of extractable DNA for hybridization studies on lymphoid tissue. Exp. Hematol. 16, 730–732 (1988).

    CAS  PubMed  Google Scholar 

  8. Srinivasan, M., Sedmak, D. & Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971 (2002).

    Article  CAS  Google Scholar 

  9. Ben-Ezra, J., Johnson, D.A., Rossi, J., Cook, N. & Wu, A. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J. Histochem. Cytochem. 39, 351–354 (1991).

    Article  CAS  Google Scholar 

  10. Argani, P., Zakowski, M.F., Klimstra, D.S., Rosai, J. & Ladanyi, M. Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod. Pathol. 11, 65–71 (1998).

    CAS  PubMed  Google Scholar 

  11. Zsikla, V., Baumann, M. & Cathomas, G. Effect of buffered formalin on amplification of DNA from paraffin wax embedded small biopsies using real-time PCR. J. Clin. Pathol. 57, 654–656 (2004).

    Article  CAS  Google Scholar 

  12. Williamson, D. et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 23, 880–888 (2005).

    Article  CAS  Google Scholar 

  13. van Dijk, M.C. et al. Multiplex ligation-dependent probe amplification for the detection of chromosomal gains and losses in formalin-fixed tissue. Diagn. Mol. Pathol. 14, 9–16 (2005).

    Article  CAS  Google Scholar 

  14. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998).

    Article  CAS  Google Scholar 

  15. Gray, J.W. et al. Molecular cytogenetics: diagnosis and prognostic assessment. Curr. Opin. Biotechnol. 3, 623–631 (1992).

    Article  CAS  Google Scholar 

  16. Tanner, M. et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am. J. Pathol. 157, 1467–1472 (2000).

    Article  CAS  Google Scholar 

  17. Lambros, M.B. et al. Unlocking pathology archives for molecular genetic studies: a reliable method to generate probes for chromogenic and fluorescent in situ hybridization. Lab. Invest. 86, 398–408 (2006).

    Article  CAS  Google Scholar 

  18. Laakso, M., Tanner, M. & Isola, J. Dual-colour chromogenic in situ hybridization for testing of HER-2 oncogene amplification in archival breast tumours. J. Pathol. 210, 3–9 (2006).

    Article  CAS  Google Scholar 

  19. Shipley, J. Putting the colours into chromogenic in situ hybridization (CISH). J. Pathol. 210, 1–2 (2006).

    Article  CAS  Google Scholar 

  20. Lu, Y.J. et al. Dual colour fluorescence in situ hybridization to paraffin-embedded samples to deduce the presence of the der(X)t(X;18)(p11.2;q11.2) and involvement of either the SSX1 or SSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. J. Pathol. 187, 490–496 (1999).

    Article  CAS  Google Scholar 

  21. Birdsall, S., Osin, P., Lu, Y.J., Fisher, C. & Shipley, J. Synovial sarcoma specific translocation associated with both epithelial and spindle cell components. Int. J. Cancer 82, 605–608 (1999).

    Article  CAS  Google Scholar 

  22. Schraml, P. et al. Tissue microarrays for gene amplification surveys in many different tumor types. Clin. Cancer Res. 5, 1966–1975 (1999).

    CAS  PubMed  Google Scholar 

  23. Brown, L.A. & Huntsman, D. Fluorescent in situ hybridization on tissue microarrays: challenges and solutions. J. Mol. Histol. 38, 151–157 (2007).

    Article  CAS  Google Scholar 

  24. Baschong, W., Suetterlin, R. & Laeng, R.H. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 49, 1565–1572 (2001).

    Article  CAS  Google Scholar 

  25. Capodieci, P. et al. Gene expression profiling in single cells within tissue. Nat. Methods 2, 663–665 (2005).

    Article  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular cloning: A Laboratory Manual Vol. 1–3 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  27. Smedley, D. et al. Characterization of chromosome 1 abnormalities in malignant melanomas. Genes Chromosomes Cancer 28, 121–125 (2000).

    Article  CAS  Google Scholar 

  28. Kallioniemi, O.P., Wagner, U., Kononen, J. & Sauter, G. Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Genet. 10, 657–662 (2001).

    Article  CAS  Google Scholar 

  29. Bayani, J. & Squire, J.A. Application and interpretation of FISH in biomarker studies. Cancer Lett. 249, 97–109 (2007).

    Article  CAS  Google Scholar 

  30. Shipley, J. et al. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma. Am. J. Pathol. 148, 559–567 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aubele, M. et al. Comparative FISH analysis of numerical chromosome 7 abnormalities in 5-micron and 15-micron paraffin-embedded tissue sections from prostatic carcinoma. Histochem. Cell Biol. 107, 121–126 (1997).

    Article  CAS  Google Scholar 

  32. Attard, G. et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27, 253–263 (2007).

    Article  Google Scholar 

  33. Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene (2007). Oct 8 (Epub ahead of print).

Download references

Acknowledgements

The authors thank Sian Rizzo and Neil Goddard for critical reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Shipley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summersgill, B., Clark, J. & Shipley, J. Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc 3, 220–234 (2008). https://doi.org/10.1038/nprot.2007.534

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing