Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protocol for the production of viable bimaternal mouse embryos

Abstract

A reliable nuclear transfer method was first reported in 1983; it provided definite evidence that parthenogenetic embryos are lethal at early postimplantation in mammals. Subsequently, nuclear transfer has been extensively used as an important and versatile tool for investigating embryo and somatic-cell cloning and nucleo-cytoplasmic interactions. Further development of this technique has enabled the generation of bimaternal embryos containing two haploid sets of maternal genomes from female germ cells of different origins. By using a 2-d nuclear transfer system for oocyte reconstruction, viable mice can be produced solely from maternal genomes, without the participation of the paternal genome. This oocyte reconstruction system, as described in this protocol, could provide valuable guidelines for exploring the potential endowments of gametes and for conferring novel properties to them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of production process for bimaternal embryos, which contain two sets of haploid genome derived from a non-growing oocyte (green) and an MII-stage fully grown oocyte (red).
Figure 2: Preparation of micromanipulation tools using a microforge.
Figure 3: Hemagglutination test.
Figure 4: Setup of the manipulation chamber.
Figure 5: Creating a perivitelline space in the GV oocytes.
Figure 6: Sequential protocol for the first nuclear transfer.
Figure 7: Sequential protocol for the second nuclear transfer.

Similar content being viewed by others

References

  1. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2003).

    Google Scholar 

  2. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Surani, M.A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

    Article  CAS  Google Scholar 

  4. Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Mann, J.R. Imprinting in the germ line. Stem Cells 19, 287–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Obata, Y., Kono, T. & Hatada, I. Gene silencing: maturation of mouse fetal germ cells in vitro. Nature 418, 497 (2002).

    Article  CAS  Google Scholar 

  7. Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    Article  CAS  Google Scholar 

  8. Lucifero, D., Mann, M.R., Bartolomei, M.S. & Trasler, J.M. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Li, E., Sucov, H.M., Lee, K.F., Evans, R.M. & Jaenisch, R. Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc. Natl. Acad. Sci. USA 90, 1590–1594 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Feil, R., Walter, J., Allen, N.D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943 (1994).

    CAS  PubMed  Google Scholar 

  11. Thorvaldsen, J.L., Duran, K.L. & Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Surani, M.A. Germ cells: the eternal link between generations. C R Biol. 330, 474–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  Google Scholar 

  14. Aoki, A. et al. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3506–3512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, I.G., Han, L., Taghva, A., O'Brien, L.E. & Hsieh, C.L. Murine de novo methyltransferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol. Cell Biol. 22, 704–723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002).

    CAS  PubMed  Google Scholar 

  17. Chedin, F., Lieber, M.R. & Hsieh, C.L. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl. Acad. Sci. USA 99, 16916–16921 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bao, S. et al. Nuclear competence for maturation and pronuclear formation in mouse oocytes. Hum. Reprod. 17, 1311–1316 (2002).

    Article  PubMed  Google Scholar 

  19. Eppig, J.J., Schultz, R.M., O'Brien, M. & Chesnel, F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T. & Carroll, J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat. Genet. 13, 91–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Obata, Y. et al. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125, 1553–1560 (1998).

    CAS  PubMed  Google Scholar 

  22. Kono, T., Sotomaru, Y., Katsuzawa, Y. & Dandolo, L. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation. Dev. Biol. 243, 294–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864 (2004).

    Article  CAS  Google Scholar 

  24. Kawahara, M., Wu, Q., Yaguchi, Y., Ferguson-Smith, A.C. & Kono, T. Complementary roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse placentation. Hum. Mol. Genet. 15, 2869–2879 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kawahara, M. et al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat. Biotechnol. 25, 1045–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kawahara, M., Wu, Q., Ferguson-Smith, A.C. & Kono, T. Appropriate expression of imprinted genes on mouse chromosome 12 extends development of bi-maternal embryos to term. FEBS Lett. 581, 5178–5184 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kono, T. Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet. Genome Res. 113, 31–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Q. et al. Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term. Reproduction 131, 481–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Bao, S. et al. Development of bovine oocytes reconstructed with a nucleus from growing stage oocytes after fertilization in vitro. Theriogenology 59, 1231–1239 (2003).

    Article  PubMed  Google Scholar 

  30. Niwa, K. et al. Nuclei of oocytes derived from mouse parthenogenetic embryos are competent to support development to term. Biol. Reprod. 71, 1560–1567 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi, T., Gong, J., Veeck, L.L., Rosenwaks, Z. & Palermo, G.D. Preliminary findings in germinal vesicle transplantation of immature human oocytes. Hum. Reprod. 16, 730–736 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Palermo, G.D., Takeuchi, T. & Rosenwaks, Z. Technical approaches to correction of oocyte aneuploidy. Hum. Reprod. 17, 2165–2173 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Kono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahara, M., Obata, Y., Sotomaru, Y. et al. Protocol for the production of viable bimaternal mouse embryos. Nat Protoc 3, 197–209 (2008). https://doi.org/10.1038/nprot.2007.531

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing