Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging

Abstract

A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins with AHA endows them with the unique chemical functionality of the azide group. In the subsequent click chemistry tagging reaction, azide-labeled proteins are covalently coupled to an alkyne-bearing affinity tag. After avidin-based affinity purification and on-resin trypsinization, the resulting peptide mixture is subjected to tandem mass spectrometry for identification. In combination with deuterated leucine-based metabolic colabeling, candidate proteins can be immediately validated. Bioorthogonal non-canonical amino-acid tagging can be combined with any subcellular fractionation, immunopurification or other proteomic method to identify specific subproteomes, thereby reducing sample complexity and enabling the identification of subtle changes in a proteome. This protocol can be completed in 5 days.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The BONCAT strategy for labeling, detection and identification of newly synthesized proteins.
Figure 2: Dot blot analysis of AHA versus Met-treated samples.
Figure 3: Western blot analysis of AHA versus Met-treated sample purification fractions.
Figure 4: Structure of AHA-based modifications.

References

  1. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    CAS  Article  Google Scholar 

  2. de Godoy, L. et al. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol. 7, R50 (2006).

    Article  Google Scholar 

  3. Mootha, V.K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    CAS  Article  Google Scholar 

  4. Andersen, J.S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    CAS  Article  Google Scholar 

  5. Collins, M.O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97 (suppl. 1): 16–23 (2006).

    CAS  Article  Google Scholar 

  6. Schrimpf, S.P. et al. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531–2541 (2005).

    CAS  Article  Google Scholar 

  7. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  Article  Google Scholar 

  8. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  Article  Google Scholar 

  9. Chang, E.J., Archambault, V., McLachlin, D.T., Krutchinsky, A.N. & Chait, B.T. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Anal. Chem. 76, 4472–4483 (2004).

    CAS  Article  Google Scholar 

  10. Garcia, B.A., Shabanowitz, J. & Hunt, D.F. Analysis of protein phosphorylation by mass spectrometry. Methods 35, 256–264 (2005).

    CAS  Article  Google Scholar 

  11. Peters, E.C., Brock, A. & Ficarro, S.B. Exploring the phosphoproteome with mass spectrometry. Mini Rev. Med. Chem. 4, 313–324 (2004).

    CAS  Article  Google Scholar 

  12. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  Article  Google Scholar 

  13. Xu, P. & Peng, J. Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta 1764, 1940–1947 (2006).

    CAS  Article  Google Scholar 

  14. Freeman, W.M. & Hemby, S.E. Proteomics for protein expression profiling in neuroscience. Neurochem. Res. 29, 1065–1081 (2004).

    CAS  Article  Google Scholar 

  15. Lilley, K.S. & Friedman, D.B. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics 1, 401–409 (2004).

    CAS  Article  Google Scholar 

  16. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    CAS  Article  Google Scholar 

  17. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    CAS  Article  Google Scholar 

  18. Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M. & Yates, J.R., 3rd . Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).

    CAS  Article  Google Scholar 

  19. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  Article  Google Scholar 

  20. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    CAS  Article  Google Scholar 

  21. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    CAS  Article  Google Scholar 

  22. Griffin, R.J. The medicinal chemistry of the azido group. Prog. Med. Chem. 31, 121–232 (1994).

    CAS  Article  Google Scholar 

  23. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    CAS  Article  Google Scholar 

  24. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    CAS  Article  Google Scholar 

  25. Link, A.J. & Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc. 125, 11164–11165 (2003).

    CAS  Article  Google Scholar 

  26. Link, A.J., Vink, M.K. & Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc. 126, 10598–10602 (2004).

    CAS  Article  Google Scholar 

  27. Luchansky, S.J., Goon, S. & Bertozzi, C.R. Expanding the diversity of unnatural cell-surface sialic acids. Chembiochem 5, 371–374 (2004).

    CAS  Article  Google Scholar 

  28. Luchansky, S.J. et al. Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. Methods Enzymol. 362, 249–272 (2003).

    CAS  Article  Google Scholar 

  29. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    CAS  Article  Google Scholar 

  30. Saxon, E. et al. Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J. Am. Chem. Soc. 124, 14893–14902 (2002).

    CAS  Article  Google Scholar 

  31. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    CAS  Article  Google Scholar 

  32. Mangold, J.B., Mischke, M.R. & LaVelle, J.M. Azidoalanine mutagenicity in Salmonella: effect of homologation and alpha-methyl substitution. Mutat. Res. 216, 27–33 (1989).

    CAS  Article  Google Scholar 

  33. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    CAS  Article  Google Scholar 

  34. Eng, J., McCormack, A.L. & Yates, A.J. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  Article  Google Scholar 

  35. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    CAS  Article  Google Scholar 

  36. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    CAS  Article  Google Scholar 

  37. Fenyo, D. & Beavis, R.C. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal. Chem. 75, 768–774 (2003).

    Article  Google Scholar 

  38. Tabb, D.L., McDonald, W.H. & Yates, J.R., 3rd . DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    CAS  Article  Google Scholar 

  39. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    CAS  Article  Google Scholar 

  40. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    CAS  Article  Google Scholar 

  41. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

    CAS  Article  Google Scholar 

  42. Washburn, M.P., Wolters, D. & Yates, J.R., 3rd . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS  Article  Google Scholar 

  43. Schieltz, D.M. & Washburn, M.P. Analysis of complex protein mixtures using multidimensional protein identification technology (MuDPIT). Cold Spring Harbor Protocols 2006 (10.1101/pdb.prot4555).

Download references

Acknowledgements

We thank S.A. Kim and E.H. Friedrich for critical reading of the manuscript. This work was supported by the Howard Hughes Medical Institute, the Beckman Institute at the California Institute of Technology and NIH (R21DA020589 to E.M.S.). MS analysis was performed at the MS facility of the laboratory of R.J. Deshaies (Howard Hughes Medical Institute, Caltech), which is supported by the Beckman Institute at Caltech and a grant from the Department of Energy to R.J.D. and Barbara J. Wold. D.C.D. is supported by the German Academy for Natural Scientists Leopoldina (BMBF-LPD9901/8-95). J.G. was supported by R.J. Deshaies through Howard Hughes Medical Institute funds. A.J.L. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela C Dieterich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dieterich, D., Lee, J., Link, A. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat Protoc 2, 532–540 (2007). https://doi.org/10.1038/nprot.2007.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.52

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing