Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A continuous process to extract plasmid DNA based on alkaline lysis

Abstract

Rapid advances in the fields of DNA vaccines and gene therapy have produced increased demands for large quantities of recombinant plasmid DNA. The protocol presented here extracts plasmid DNA in a scalable continuous process based on an alkaline lysis protocol. In the process, harvested bacteria are passed through two mixing chambers at controlled speeds to effect lysis and control alkalinity. The resulting solution is passed through a series of filters to remove contaminants and then ethanol precipitated. This process replaces all the centrifugation steps before obtaining crude plasmid and can be easily scaled up to meet demands for larger quantities. Using this procedure, plasmid can be extracted and purified from 4 l of Escherichia coli culture at an OD 600 nm of 50 in <90 min. The plasmid yields are āˆ¼80ā€“90 mg lāˆ’1 culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of continuous alkaline lysis process to extract plasmid DNA from Escherichia coli.
Figure 2: Electrophoresis of plasmid extracted from the continuous alkaline lysis.

Similar content being viewed by others

References

  1. Friedmann, T. The road toward human gene therapyā€“a 25-year perspective. Ann. Med. 29, 575ā€“577 (1997).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Liljeqvist, S. & Stahl, S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J. Biotechnol. 73, 1ā€“33 (1999).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Crystal, R.G. The gene as the drug. Nat. Med. 1, 15ā€“17 (1995).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Ferreira, G.N., Monteiro, G.A., Prazeres, D.M. & Cabral, J.M. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol. 18, 380ā€“388 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Levy, M.S., O'Kennedy, R.D., Ayazi-Shamlou, P. & Dunnill, P. Biochemical engineering approaches to the challenges of producing pure plasmid DNA. Trends Biotechnol. 18, 296ā€“305 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Eastman, E.M. & Durland, R.H. Manufacturing and quality control of plasmid-based gene expression systems. Adv. Drug Deliv. Rev. 30, 33ā€“48 (1998).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Prather, K.J., Sagar, S., Murphy, J. & Chartrain, M. Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb. Technol. 33, 865ā€“883 (2003).

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Prazeres, D.M., Ferreira, G.N., Monteiro, G.A., Cooney, C.L. & Cabral, J.M. Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks. Trends Biotechnol. 17, 169ā€“174 (1999).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Birnboim, H.C. & Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513ā€“1523 (1979).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Kelly, B. & Hatton, T. The fermentation/downstream processing interface. Bioseparation 1, 333ā€“349 (1991).

    Google ScholarĀ 

  11. Prazeres, D.M., Schluep, T. & Cooney, C. Preparative purification of supercoiled plasmid DNA using anion-exchange chromatography. J. Chromatogr. A 806, 31ā€“45 (1998).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Theodossiou, I., Collins, I.J., Ward, J.M., Thomas, O.R.T. & Dunnill, P. The processing of a plasmid-based gene from E. coli. Primary recovery by filtration. Bioprocess Eng. 16, 175ā€“183 (1997).

    CASĀ  Google ScholarĀ 

  13. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Press, New York, 2001).

    Google ScholarĀ 

  14. Wang, B., Merva, M., Williams, W.V. & Weiner, D.B. Large-scale preparation of plasmid DNA by microwave lysis. Biotechniques 18, 554ā€“555 (1995).

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Zhu, K., Jin, H., He, Z., Zhu, Q. & Wang, B. A continuous method for the large-scale extraction of plasmid DNA by modified boiling lysis. Nat. Protoc. 1, 3088ā€“3093 (2006).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Zhu, K. et al. A continuous thermal lysis procedure for the large-scale preparation of plasmid DNA. J. Biotechnol. 118, 257ā€“264 (2005).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Li, X. et al. An automated process to extract plasmid DNA by alkaline lysis. Appl. Microbiol Biotechnol. 75, 1217ā€“1223 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Hoopes, B.C. & McClure, W.R. Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Res. 9, 5493ā€“5504 (1981).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Gustincich, S., Manfioletti, G., Del Sal, G., Schneider, C. & Carninci, P. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11, 298ā€“300, 302 (1991).

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Ishaq, M., Wolf, B. & Ritter, C. Large-scale isolation of plasmid DNA using cetyltrimethylammonium bromide. Biotechniques 9, 19ā€“20, 22, 24 (1990).

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Davies, M.J. et al. Improved manufacture and application of an agarose magnetizable solid-phase support. Appl. Biochem. Biotechnol. 68, 95ā€“112 (1997).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Jin, H. et al. Effect of chemical adjuvants on DNA vaccination. Vaccine 22, 2925ā€“2935 (2004).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Sayers, J.R., Evans, D. & Thomson, J.B. Identification and eradication of a denatured DNA isolated during alkaline lysis-based plasmid purification procedures. Anal. Biochem. 241, 186ā€“189 (1996).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jin, H., Wu, Z. et al. A continuous process to extract plasmid DNA based on alkaline lysis. Nat Protoc 3, 176ā€“180 (2008). https://doi.org/10.1038/nprot.2007.526

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.526

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing