Abstract
The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16–20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S16CLSI, Wayne, PA (2006).
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9, ix–xv (2003).
Kahlmeter, G. et al. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 52, 145–148 (2003).
Nanavaty, J., Mortensen, J.E. & Shryock, T.R. The effects of environmental conditions on the in vitro activity of selected antimicrobial agents against Escherichia coli. Curr. Microbiol. 36, 212–215 (1998).
D'amato, R.F., Thornsberry, C., Baker, C.N. & Kirven, L.A. Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrob. Agents Chemother. 7, 596–600 (1975).
Rhomberg, P.R., Sader, H.S. & Jones, R. Reproducibility of daptomycin MIC results using dry-form commercial trays with appropriate supplemental calcium content. Int. J. Antimicrob. Agents 25, 274–276 (2005).
Bowdish, D.M., Davidson, D.J. & Hancock, R.E. A re-evalution of the role of host defence peptides in mammalian immunity. Curr. Protein Pep. Sci. 6, 35–51 (2005).
Hancock, R.E. & Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).
Chambers, H.F. & Hackbarth, C.J. Effect of NaCl and nafcillin on penicillin-binding protein 2a and heterogeneous expression of methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 31, 1982–1988 (1987).
Ferguson, R.W. & Weissfeld, A.S. Comparison of the suitability of three common bacterial media for susceptibility testing of trimethoprim-sulfamethoxazole. Clin. Microbiol. 19, 85–86 (1984).
Bradford, P.A. et al. Tigecycline MIC testing by broth dilution requires use of fresh medium or addition of the biocatalytic oxygen-reducing reagent oxyrase to standardize the test method. Antimicrob. Agents Chemother. 49, 3903–3909 (2005).
Thomson, K.S. & Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 45, 3548–3554 (2001).
Chambers, H.F. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1, 173–186 (1988).
Granier, S.A. et al. False susceptibility of Klebsiella oxytoca to some extended-spectrum cephalosporins. J. Antimicrob. Chemother. 50, 303–304 (2002).
Pankey, G.A. & Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).
Biedenbach, D.J., Schermer, I.H. & Jones, R.N. Validation of Etest for seven antimicrobial agents using regulatory criteria for the assessment of antimicrobial susceptibility devices. Diagn. Microbiol. Infect. Dis. 27, 1–5 (1997).
Andrews, J.M. & Wise, R. Comparison of the Etest with a conventional agar dilution method in evaluating the in vitro activity of moxifloxacin. J. Antimicrob. Chemother. 45, 257–258 (2000).
Steward, C.D. et al. Antimicrobial susceptibility testing of carbapenems: multicenter validity testing and accuracy levels of five antimicrobial test methods for detecting resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 41, 351–358 (2003).
Biedenbach, D.J. & Jones, R.N. Comparative assessment of Etest for testing susceptibilities of Neisseria gonorrhoeae to penicillin, tetracycline, ceftriaxone, cefotaxime, and ciprofloxacin: investigation using 510(k) review criteria, recommended by the Food and Drug Administration. J. Clin. Microbiol. 34, 3214–3217 (1996).
Di Bonaventura, G. et al. Comparison of Etest, agar dilution, broth microdilution and disk diffusion methods for testing in vitro activity of levofloxacin against Staphylococcus spp. isolated from neutropenic cancer patients. Int. J. Antimicrob. Agents. 19, 147–154 (2002).
Fritsche, T.R., Rennie, R.P., Goldstein, B.P. & Jones, R.N. Comparison of dalbavancin MIC values determined by Etest (AB BIODISK) and reference dilution methods using gram-positive organisms. J. Clin. Microbiol. 44, 2988–2990 (2006).
Sader, H.S., Fritsche, T.R. & Jones, R.N. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J. Clin. Microbiol. 44, 1101–1104 (2006).
Wiegand, I. et al. Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. J. Clin. Microbiol. 45, 1167–1174 (2007).
Andrews, JM. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48 (suppl. 1): 5–16 (2001).
Steinberg, D.A., Hurst, M.A., Fujii, C.A., Kung, A.H., Ho, J.F., Cheng, F.C., Loury, D.J. & Fiddes, J.C. Protegrin-1: a broad-spectrum, rapidly microbial peptide with in vivo activity. Antimicrob. Agents Chemother. 41, 1738–1742 (1997).
Wick, WE. Influence of antibiotic stability on the results of in vitro testing procedures. J. Bacteriol. 87, 1162–1170 (1964).
Wiegand, I. & Wiedemann, B. Microbial resistance to drugs. In Encyclopedic Refererence of Molecular Pharmacology (eds. Offermanns, S. & Rosenthal, W.) 594–600 (Springer-Verlag, Berlin Heidelberg, 2003).
Ericsson, HM & Sherris, JC. Antibiotic sensitivity testing. Report of an international collaborative study. Acta. Pathol. Microbiol. Scand. B. 217 (suppl.), 1–90 (1971).
Acknowledgements
We acknowledge the financial assistance of the Applied Food and Materials Network and the Canadian Institutes of Health Research. R.E.W.H. was supported by a Canada Research Chair award. K.H. was supported by a fellowship from the Canadian Institutes of Health Research. I.W. was supported by the Juergen-Manchot-Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wiegand, I., Hilpert, K. & Hancock, R. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3, 163–175 (2008). https://doi.org/10.1038/nprot.2007.521
Published:
Issue Date:
DOI: https://doi.org/10.1038/nprot.2007.521
This article is cited by
-
Plumieride as a novel anti-fungal and anti-inflammatory iridoid against superficial candidiasis in mice
BMC Complementary Medicine and Therapies (2024)
-
Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides
Nature Communications (2024)
-
Anti-MRSA Pyrone Derivative Products Isolated from Plant-Derived Fungus Aspergillus niger Pas67
Chemistry of Natural Compounds (2024)
-
Antimicrobial, Anti-Quorum Sensing, and Antibiofilm Potentials of Newly Isolated Streptomyces spp.
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2024)
-
Synthesis, characterization, antimicrobial activity and molecular docking study of transition metal complexes based on azo coumarin and thiosemicarbazone derivative
Journal of the Iranian Chemical Society (2024)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.