Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Membrane reconstitution of ABC transporters and assays of translocator function

Abstract

In this protocol, we describe a procedure for incorporating ATP-binding cassette (ABC) transporters into large unilamellar vesicles (LUVs) and assays to determine ligand binding and solute translocation by these membrane-reconstituted systems. The reconstitution technique as described has been optimized for ABC transporters but can be readily adapted for other types of transport systems. Purified transporters are inserted into detergent-destabilized preformed liposomes and detergent is subsequently removed by adsorption onto polystyrene beads. Next, Mg-ATP or an ATP-regenerating system is incorporated into the vesicle lumen by one or more cycles of freezing-thawing, followed by extrusion through polycarbonate filters to obtain unilamellar vesicles. Binding and translocation of substrates are measured using isotope-labeled ligands and rapid filtration to separate the proteoliposomes from the surrounding medium. Quantitative information is obtained about dissociation constants (Kd) for ligand binding, number of binding-sites, transport affinities (Km), rates of transport, and the activities of transporter molecules with opposite orientations in the membrane. The full protocol can be completed within 4–5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the described procedures for membrane reconstitution and functional analysis of ATP-binding cassette (ABC) transporters.
Figure 2: Titration of preformed liposomes with Triton X-100.
Figure 3: Architecture of ATP-binding cassette transport systems.
Figure 4: Glycine-betaine binding and transport by OpuA.

Similar content being viewed by others

References

  1. Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995).

    Article  PubMed  Google Scholar 

  2. Rigaud, J.L. & Lévy, D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Holloway, P.W. A simple procedure for removal of Triton X-100 from protein samples. Anal. Biochem. 53, 304–308 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Poolman, B. et al. Functional analysis of detergent-solubilized and membrane-reconstituted ATP-binding cassette transporters. Methods Enzymol. 400, 429–459 (2005).

    Article  CAS  Google Scholar 

  5. Almog, S. et al. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry 29, 4582–4592 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Knol, J. et al. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. J. Biol. Chem. 271, 15358–15366 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Knol, J., Sjollema, K. & Poolman, B. Detergent-mediated reconstitution of membrane proteins. Biochemistry 37, 16410–16415 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Lévy, D., Gulik, A., Bluzat, A. & Rigaud, J.L. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim. Biophys. Acta 1107, 283–298 (1992).

    Article  PubMed  Google Scholar 

  9. Fang, G. et al. Manipulation of activity and orientation of membrane-reconstituted di-tripeptide transport protein DtpT of Lactococcus lactis. Mol. Membr. Biol. 16, 297–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Rigaud, J.L., Paternostre, M.T. & Bluzat, A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27, 2677–2688 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Eytan, G.D. Use of liposomes for reconstitution of biological functions. Biochim. Biophys. Acta 694, 185–202 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Higgins, C.F. Multiple molecular mechanisms for multidrug resistance transporters. Nature 446, 749–757 (2007).

    Article  CAS  Google Scholar 

  13. Davidson, A.L. & Chen, J. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73, 241–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Biemans-Oldehinkel, E., Doeven, M.K. & Poolman, B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–1035 (2006).

    Article  CAS  Google Scholar 

  15. Neu, H.C. & Heppel, L.A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240, 3685–3692 (1965).

    CAS  PubMed  Google Scholar 

  16. Sutcliffe, I.C. & Russell, R.R. Lipoproteins of gram-positive bacteria. J. Bacteriol. 177, 1123–1128 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albers, S.V. et al. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181, 4285–4291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Heide, T. & Poolman, B. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3, 938–943 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patzlaff, J.S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003).

    Article  CAS  Google Scholar 

  20. Biemans-Oldehinkel, E., Mahmood, N.A. & Poolman, B.A sensor for intracellular ionic strength. Proc. Natl. Acad. Sci. USA 103, 10624–10629 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Mahmood, N.A., Biemans-Oldehinkel, E., Patzlaff, J.S., Schuurman-Wolters, G.K. & Poolman, B. Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA. J. Biol. Chem. 281, 29830–29839 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Borths, E.L., Poolman, B., Hvorup, R.N., Locher, K.P. & Rees, D.C. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44, 16301–16309 (2005).

    Article  CAS  Google Scholar 

  23. Detmers, F.J. et al. Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis. Proc. Natl. Acad. Sci. USA 97, 12487–12492 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Doeven, M.K., Abele, R., Tampé, R. & Poolman, B. The binding specificity of OppA determines the selectivity of the oligopeptide ATP-binding cassette transporter. J. Biol. Chem. 279, 32301–32307 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. USA 97, 7102–7106 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Schuurman-Wolters, G.K. & Poolman, B. Substrate specificity and ionic regulation of GlnPQ from Lactococcus lactis. An ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains. J. Biol. Chem. 280, 23785–23790 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Margolles, A., Putman, M., van Veen, H.W. & Konings, W.N The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38, 16298–16306 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Orelle, C., Dalmas, O., Gros, P., Di Pietro, A. & Jault, J. The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J. Biol. Chem. 278, 47002–47008 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Jung, H., Tebbe, S., Schmid, R. & Jung, K. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli. Biochemistry 37, 11083–11088 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Horn, C., Bremer, E. & Schmitt, L. Functional overexpression and in vitro re-association of OpuA, an osmotically regulated ABC-transport complex from Bacillus subtilis. FEBS Lett. 579, 5765–5768 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Urbani, A. & Warne, T. A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research. Anal. Biochem. 336, 117–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Strop, P. & Brunger, A.T. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein. Sci. 14, 2207–2211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. daCosta, C.J. & Baenziger, J.E. A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallization. Acta Crystallogr. D Biol. Crystallogr. 59, 77–83 (2003).

    Article  PubMed  Google Scholar 

  34. Møller, J.V. & le Maire, M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J. Biol. Chem. 268, 18659–18672 (1993).

    PubMed  Google Scholar 

  35. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Biemans-Oldehinkel, E. & Poolman, B. On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J. 22, 5983–5993 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van der Heide, T., Stuart, M.C. & Poolman, B. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022–7032 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman, M.J. & Wilson, T.H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255, 10583–10586 (1980).

    CAS  PubMed  Google Scholar 

  39. Rigaud, J., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-polar polystyrene beads. Applications to membrane protein reconstitution and two-dimensional crystallization. Eur. Biophys. J. 27, 305–319 (1998).

    Article  CAS  Google Scholar 

  40. Borths, E., Locher, K., Lee, A. & Rees, D. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. USA 99, 16642–16647 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Boch, J., Kempf, B. & Bremer, E. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol. 176, 5364–5371 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pidgeon, C., Apostol, G. & Markovich, R. Fourier transform infrared assay of liposomal lipids. Anal. Biochem. 181, 28–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Silhavy, T.J., Szmelcman, S., Boos, W. & Schwartz, M. On the significance of the retention of ligand by protein. Proc. Natl. Acad. Sci. USA 72, 2120–2124 (1975).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, D.M. 3rd, Olson, J.S., Pflugrath, J.W. & Quiocho, F.A. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J. Biol. Chem. 258, 13665–13672 (1983).

    CAS  PubMed  Google Scholar 

  45. Kragh-Hansen, U., le Maire, M. & Møller, J.V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 75, 2932–2946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doeven, M.K. et al. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys. J. 88, 1134–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Angelova, M.I., Soléau, S., Méléard, P., Faucon, J.F. & Bothorel, P. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Colloid Polym. Sci. 89, 127–131 (1992).

    Article  CAS  Google Scholar 

  48. Mayer, L.D., Hope, M.J. & Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. MacDonald, R.C. et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. White, G.F., Racher, K.I., Lipski, A., Hallett, F.R. & Wood, J.M. Physical properties of liposomes and proteoliposomes prepared from Escherichia coli polar lipids. Biochim. Biophys. Acta 1468, 175–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Oku, N., Kendall, D.A. & MacDonald, R.C. A simple procedure for the determination of the trapped volume of liposomes. Biochim. Biophys. Acta 691, 332–340 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the past and present members of the Poolman laboratory: without their contributions the protocols presented here would not have been established. The EU-FP6 program (E-MeP; 504601), Netherlands Proteomics Centre (NPC) and the National Science Foundation (NWO-Top Subsidy, grant 700.56.302) are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Poolman.

Supplementary information

Supplementary Figure 1

Glycine betaine transport by OpuA. [14C]-glycine betaine uptake by OpuA proteoliposomes containing an ARS in 100 mM KPi, pH7.0 without (; isotonic) or with 250 mM KCl (□; hyperosmotic). The data is corrected for background binding of [14C]-glycine betaine to OpuA liposomes without the ARS. (PDF 805 kb)

Supplementary Figure 2

Demonstration of glycine betaine uptake by RSO-reconstituted OpuA and efflux by ISO-reconstituted OpuA. Following [14C]glycine betaine preloading of OpuA proteoliposomes (containing 10 mM Mg-ATP in the vesicle lumen) under activating conditions (80 mM KPi, pH 7.0 with 450 mM sucrose) and assaying for actual uptake (•), the proteoliposomes were stored on ice for subsequent measurements of glycine betaine efflux via inside-out reconstituted OpuA. Following storage on ice (no leakage of [14C]glycine betaine was observed up to 4 h of storage), samples were diluted 5-fold with 10 mM KPi, pH 7.0, and equilibrated for 3 min at 30 °C. Subsequently, 0.3 M KCl was added to activate OpuA; the addition was done by a 2-fold dilution with pre-warmed medium of the appropriate composition (for further details, see a); this step, the ionic activation, is required for osmoregulatory ABC transporters a, b but will not be necessary for other ABC transport systems. After another 2 min of incubation, 10 mM Mg-ATP was added to energize inside-out oriented OpuA (▪). Samples were taken at the indicated time points and processed in the same way as for uptake measurements. (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geertsma, E., Nik Mahmood, N., Schuurman-Wolters, G. et al. Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3, 256–266 (2008). https://doi.org/10.1038/nprot.2007.519

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing