Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Methods for detection, isolation and culture of mouse and human invariant NKT cells

Abstract

This protocol describes methods to identify, purify and culture CD1d restricted invariant natural killer T (iNKT) cells from mouse tissue or human blood samples. The methods for identification and purification of iNKT cells are based on the interaction between iNKT cell receptor and its ligand. The iNKT cell receptor is composed of the invariant Vα14Jα18/Vβ8.2 in mice or Vα24Jα18/Vβ11 in humans and is expressed only on iNKT cells but not on conventional T cells. The iNKT cell antigen receptor in both species recognizes α-galactosylceramide (α-GalCer) presented by the MHC class I-like CD1d. Thus, α-GalCer-loaded CD1d dimer can be used for analysis and purification by fluorescence-activated cell sorting (FACS). Isolation of 1 × 106 purified iNKT cells from mouse thymus, spleen or liver requires 5–6 mice and takes 1–2 h for mononuclear cell preparation from mouse tissues, 1.5 h for enrichment by magnetic beads and 4 h for detection and purification of the iNKT cells by FACS. In the case of isolation of human peripheral blood mononuclear cells (PBMCs) from whole blood, it takes 2 h and requires 5 ml of blood to obtain 5 × 106 PBMCs, which contain 500–25,000 iNKT cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of mouse iNKT cells.
Figure 2: Phenotypic and functional analyses of iNKT cells.

Similar content being viewed by others

References

  1. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  Google Scholar 

  2. Wilson, S.B. & Delovitch, T.L. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol. 3, 211–222 (2003).

    Article  CAS  Google Scholar 

  3. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  4. Taniguchi, M., Seino, K. & Nakayama, T. The NKT cell system: bridging innate and acquired immunity. Nat. Immunol. 4, 1164–1165 (2003).

    Article  CAS  Google Scholar 

  5. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    Article  CAS  Google Scholar 

  6. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of MHC class I-specific CD4+ and CD4-8 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  Google Scholar 

  7. Exley, M., Garcia, J., Balk, S.P. & Porcelli, S. Requirements for CD1d recognition by human invariant Vα24+CD4CD8 T cells. J. Exp. Med. 186, 109–120 (1997).

    Article  CAS  Google Scholar 

  8. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  Google Scholar 

  9. Speak, A.O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl. Acad. Sci. USA 104, 5971–5976 (2007).

    Article  CAS  Google Scholar 

  10. Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. USA 104, 5977–5982 (2007).

    Article  CAS  Google Scholar 

  11. Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  Google Scholar 

  12. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  13. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature. 448, 44–49 (2007).

    Article  CAS  Google Scholar 

  14. Tynan, F.E. et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat. Immunol. 6, 1114–1122 (2005).

    Article  CAS  Google Scholar 

  15. Kawakami, K. et al. Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur. J. Immunol. 33, 3322–3330 (2003).

    Article  CAS  Google Scholar 

  16. Nieuwenhuis, E.E. et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8, 588–593 (2002).

    Article  CAS  Google Scholar 

  17. Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002).

    Article  CAS  Google Scholar 

  18. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  19. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  Google Scholar 

  20. Nakagawa, R. et al. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J. Immunol. 166, 6578–6584 (2001).

    Article  CAS  Google Scholar 

  21. Kojo, S. et al. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J. Immunol. 175, 3648–3655 (2005).

    Article  CAS  Google Scholar 

  22. Hammond, K.J. et al. α/β-T cell receptor (TCR)+ CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056 (1998).

    Article  CAS  Google Scholar 

  23. Nakamura, T. et al. CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. J. Immunol. 171, 1266–1271 (2003).

    Article  CAS  Google Scholar 

  24. Ikehara, Y. et al. CD4+ Vα14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest. 105, 1761–1767 (2000).

    Article  CAS  Google Scholar 

  25. Seino, K.I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl. Acad. Sci. USA 98, 2577–2581 (2001).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 312, 34–39 (2006).

    Article  CAS  Google Scholar 

  27. Greten, T.F. et al. Peptide-beta2-microglobulin-MHC fusion molecules bind antigen-specific T cells and can be used for multivalent MHC-Ig complexes. J. Immunol. Methods 271, 125–135 (2002).

    Article  CAS  Google Scholar 

  28. Naidenko, O.V. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J. Exp. Med. 190, 1069–1080 (1999).

    Article  CAS  Google Scholar 

  29. Hammond, K.J.L. et al. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 167, 1164–1173 (2001).

    Article  CAS  Google Scholar 

  30. Sidobre, S. & Kronenberg, M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 268, 107–121 (2002).

    Article  CAS  Google Scholar 

  31. Karadimitris, A.S. et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Etsuko Sekine, Sayo Inoue, Sakura Sakata and Yuko Nagata for their technical support; Professor Peter D. Burrows for critical reading; and Norie Takeuchi for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Taniguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watarai, H., Nakagawa, R., Omori-Miyake, M. et al. Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc 3, 70–78 (2008). https://doi.org/10.1038/nprot.2007.515

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.515

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing