Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-MS metabolite fingerprints


Flow injection electrospray mass spectrometry (FIE-MS) metabolite fingerprinting is widely used as a 'first pass' screen for compositional differences, where discrimination between samples can be achieved without any preconceptions. Powerful data analysis algorithms can be used to select and rank FIE-MS fingerprint variables highly explanatory of the biological problem under investigation. We describe how to create a species-specific FIE-MS/MSn metabolite database and how to then query the database to predict the identity of highly significant variables within FIE-MS fingerprints. The protocol details how to interpret m/z signals within the explanatory variable list based on a correlation analysis in conjunction with an investigation of mathematical relationships regarding (de)protonated molecular ions, salt adducts, neutral losses and dimeric associations routinely observed in FIE-MS fingerprints. Although designed for use by biologists/analytical chemists, collaboration with data-mining experts is generally advised. The protocol is applicable in any areas of bioscience research involving FIE-MS fingerprinting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Flow diagram of steps used to annotate metabolite signals from an FIE-MS fingerprint representing a specific sample matrix.
Figure 2: Flow diagram of steps for the annotation of explanatory signals from FIE-MS fingerprint data-modeling experiments.
Figure 3: FIE-MS fingerprinting of sucrose solutions showing the effect of salts in the sample matrix.
Figure 4: The effect of sodium on the formation of ion clusters.
Figure 5: Examples of neutral losses and chlorine isotopes in metabolite spectra.
Figure 6: FIE-MS/MS3 fragmentation trees of the potato tuber glycoalkaloids chaconine and solanine in positive ion mode showing sequential loss of sugar units.
Figure 7: FIE-MS/MS3 fragmentation tree record of an unknown Brachypodium metabolite (m/z 461) in negative ion mode.
Figure 8: Putative annotation of an arginine [M + H]+ ion from an FIE-MS fingerprint of a crude potato extract by spectrum matching with known standards in the ARMeC database.
Figure 9: Annotation of m/z signals in FIE-MS fingerprints after fragmentation and further chromatography to identify isomers.
Figure 10: Examination of correlation analysis results, isotopic ratios and intensity behavior to discover linked FIE-MS signals.
Figure 11: Correlation analysis of explanatory variables discriminatory for quality traits in a comparison of five different potato cultivars in negative-ion mode FIE-MS.


  1. 1

    Rashed, M.S. Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J. Chromatogr. B 758, 27–48 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Wilcken, B., Wiley, V., Hammond, J. & Carpenter, K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med. 348, 2304–2312 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Catchpole, G.S. et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. USA 102, 14458–14462 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Ramos Catharino, R. et al. Characterization of vegetable oils by electrospray ionization mass spectrometry fingerprinting: classification, quality, adulteration, and aging. Anal. Chem. 77, 7429–7433 (2005).

    Article  Google Scholar 

  5. 5

    Allen, J. et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 21, 692–696 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Smedsgaard, J. & Frisvad, J.C. Terverticillate Penicillia studied by direct electrospray mass spectrometric profiling of crude extracts. I. Chemosystematics. Biochem. Syst. Ecol. 25, 51–64 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Enot, D.P., Beckmann, M., Overy, D.P. & Draper, J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc. Natl. Acad. Sci. USA 103, 14865–14870 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Beckmann, M., Parker, D., Enot, D.P., Duval, E. & Draper, J. High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat. Protoc. 3, 486–504 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Dunn, W.B., Overy, S. & Quick, W.P. Evaluation of automated electrospray-TOF mass spectrometry for metabolic fingerprinting of the plant metabolome. Metabolomics 1, 137–148 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Gray, G.R. & Heath, D. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol. Plant. 124, 236–248 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Cole, R.B. Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 35, 763–772 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Trethewey, R.N. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 7, 196–201 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Schug, K. & McNair, H.M. Adduct formation in electrospray ionization. Part 1: common acidic pharmaceuticals. J. Sep. Sci. 25, 760–766 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Kebarle, P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom. 35, 804–817 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Zhu, J. & Cole, R.B. Formation and decompositions of chloride adduct ions, [M + Cl], in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 932–941 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Enot, D. et al. Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nat. Protoc. 3, 446–470 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Beckmann, M., Enot, D.P., Overy, D & Draper, J. Representation, comparison and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato plants. J. Agric. Food Chem. 55, 3444–3451 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Kaneshisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  Google Scholar 

  21. 21

    Garcia-Hernandez, M. et al. TAIR: a resource for integrated Arabidopsis data. Funct. Integr. Genomics 2, 239–253 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Shinbo, Y. et al. KNApSAcK: a comprehensive species-metabolite relationship database. Biotechnol. Agric. Forest. 57, 165–184 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Wishart, D. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Wagner, A.B. SciFinder Scholar 2006: an empirical analysis of research topic query processing. J. Chem. Inf. Model. 46, 767–774 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Kind, T. & Fiehn, O. Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7, 234–243 (2006).

    Article  Google Scholar 

  26. 26

    Baumann, C. et al. A library of atmospheric pressure ionization daughter ion mass spectra based on wideband excitation in an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 14, 349–356 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Fredenhagen, A., Derrien, C. & Gassmann, E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M + H]+ and [M + Na]+ ions. J. Nat. Prod. 68, 385–391 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Milman, B.L. Towards a full reference library of MSn spectra. Testing of a library containing 3126 MS2 spectra of 1743 compounds. Rapid Comm. Mass Spectrom. 19, 2833–2839 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Pavlic, M., Libiseller, K. & Oberacher, H. Combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs. Anal. Bioanal. Chem. 386, 69–82 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Parker, D. et al. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat. Protoc. 3, 435–445 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Broadhurst, D.I. & Kell, D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–196 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Connolly, T. & Begg, C. Database Systems: a practical approach to design, implementation and management. Addison-Wesley, (2002).

    Google Scholar 

  34. 34

    Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N. & Fiehn, O. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Analytical Chemistry 75, 6737–6740 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Dear, G.J., James, A.D. & Sarda, S. Ultra-performance liquid chromatography coupled to linear ion trap mass spectrometry for the identification of drug metabolites in biological samples. Rapid Commun. Mass Spectrom. 20, 1351–1360 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Gorlach, E. & Richmond, R. Discovery of quasi-molecular ions in electrospray spectra by automated searching for simultaneous adduct mass differences. Anal. Chem. 71, 5557–5562 (1999).

    Article  Google Scholar 

  37. 37

    Nielsen, K.F. & Smedsgaard, J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chromatogr. A 1002, 111–136 (2003).

    CAS  Article  Google Scholar 

  38. 38

    R Development Core Team. R: a Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-900007-900050, http://www.R-project.org (2006).

Download references


Research activities were funded by the Food Standards Agency under the project 'Development of unified data models and data pre-processing strategies and the generation of meaningful, standardized statistical analyses of metabolome variability in crop plants' (project code: GO3012).

Author information



Corresponding author

Correspondence to John Draper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Overy, D., Enot, D., Tailliart, K. et al. Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-MS metabolite fingerprints. Nat Protoc 3, 471–485 (2008). https://doi.org/10.1038/nprot.2007.512

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing