Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets

Abstract

In most organisms, one crossover (CO) event inhibits the chances of another nearby event. The term used to describe this phenomenon is 'CO interference'. Here, we describe a protocol for quickly generating large data sets that are amenable to CO interference analysis in the flowering plant, Arabidopsis thaliana. We employ a visual assay that utilizes transgenic marker constructs encoding pollen-expressed fluorescent proteins of three colors in the quartet mutant background. In this genetic background, male meiotic products—the pollen grains—remain physically attached thereby facilitating tetrad analysis. We have developed a library of mapped marker insertions that, when crossed together, create adjacent intervals that can be rapidly and simultaneously screened for COs. This assay system is capable of detecting and differentiating single COs as well as two-, three- and four-strand double COs. We also describe how to analyze the data that are produced by this method. To generate and score a double interval in a wild-type and mutant background using this protocol will take 22–27 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of fluorescent transgenes.
Figure 2: Single locus segregation patterns in pollen tetrads.
Figure 3: Classification of tetrad fluorescent patterns.
Figure 4: Examples of multicolor fluorescent tetrads.

Similar content being viewed by others

References

  1. Zickler, D. & Kleckner, N. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Page, S.L. & Hawley, R.S. Chromosome choreography: the meiotic ballet. Science 301, 785–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones, G.H. & Franklin, F.C. Meiotic crossing-over: obligation and interference. Cell 126, 246–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Borner, G.V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  PubMed  Google Scholar 

  6. Foss, E., Lande, R., Stahl, F.W. & Steinberg, C.M. Chiasma interference as a function of genetic distance. Genetics 133, 681–691 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sturtevant, A.H. The behavior of chromosomes as studied through linkage. Z. Induct. Abstammungs-Vererbungsl. 13, 234–287 (1915).

    Google Scholar 

  8. Muller, H.J. The mechanism of crossing over. Am. Nat. 50, 193–434 (1916).

    Article  Google Scholar 

  9. Hillers, K.J. Crossover interference. Curr. Biol. 14, R1036–R1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Copenhaver, G.P., Housworth, E.A. & Stahl, F.W. Crossover interference in Arabidopsis. Genetics 160, 1631–1639 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Housworth, E.A. & Stahl, F.W. Crossover interference in humans. Am. J. Hum. Genet. 73, 188–197 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Foss, E.J. & Stahl, F.W. A test of a counting model for chiasma interference. Genetics 139, 1201–1209 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McPeek, M.S. & Speed, T.P. Modeling interference in genetic recombination. Genetics 139, 1031–1044 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Drouaud, J. et al. Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PloS Genet. 3, e106 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hawley, R.S., McKim, K.S. & Arbel, T. Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths. Annu. Rev. Genet. 27, 281–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Francis, K.E. et al. A pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 3913–3918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berchowitz, L.E., Francis, K.E., Bey, A.L. & Copenhaver, G.P. The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PloS Genet. 3, e132 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lam, S.Y. et al. Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis. Genetics 170, 807–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malkova, A. et al. Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168, 49–63 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mortimer, R.K. & Hawthorne, D.C. Genetic mapping in Saccharomyces IV. Mapping of temperature-sensitive genes and use of disomic strains in localizing genes. Genetics 74, 33–54 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fogel, S. & Mortimer, R.K. Recombination in yeast. Annu. Rev. Genet. 5, 219–236 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Yauk, C.L., Bois, P.R. & Jeffreys, A.J. High-resolution sperm typing of meiotic recombination in the mouse MHC beta gene. EMBO J 22, 1389–1397.

  23. Tiemann-Boege, I., Calabrese, P., Cochran, D.M., Sokol, R. & Arnheim, N. High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing. PloS Genet. 2, e70 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perkins, D.D. The detection of linkage in tetrad analysis. Genetics 38, 187–197 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Papazian, H.P. The analysis of tetrad data. Genetics 37, 175–188 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hawley, R.S. Meiosis in living color: fluorescence-based tetrad analysis in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 3673–3674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Copenhaver, G.P. A compendium of plant species producing pollen tetrads. J. North Carolina Acad. Sci. 121, 17–35 (2005).

    Google Scholar 

  28. Copenhaver, G.P., Browne, W.E. & Preuss, D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl. Acad. Sci. USA 95, 247–252 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeffreys, A.J. et al. Meiotic recombination hot spots and human DNA diversity. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 359, 141–152 (2004).

    Article  CAS  Google Scholar 

  30. Janssens, F.A. Spermatogénese dans les batraciens. V. La théorie de la chiasmatypie, nouvelle interpretation des cinéses de maturation. Cellule 25, 387–411 (1909).

    Google Scholar 

  31. Higgins, J.D., Armstrong, S.J., Franklin, F.C. & Jones, G.H. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes. Dev. 18, 2557–2570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Boer, E., Dietrich, A.J., Hoog, C., Stam, P. & Heyting, C. Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis. J. Cell. Sci. 120, 731–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. de Boer, E., Stam, P., Dietrich, A.J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl. Acad. Sci. USA 103, 9607–9612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, G.H. The control of chiasma distribution. In Controlling Events In Meiosis (eds. Evans, C., & Dickinson, H.) 293–320 (The Company of Biologists, Cambridge, UK, 1984).

    Google Scholar 

  35. Carpenter, A.T. Recombination nodules and synaptonemal complex in recombination-defective females of Drosophila melanogaster. Chromosoma 75, 259–292 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Sherman, J.D. & Stack, S.M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141, 683–708 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpenter, A.T. Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics 92, 511–541 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carpenter, A.T. Electron microscopy of meiosis in Drosophila melanogaster females: II. The recombination nodule—a recombination-associated structure at pachytene? Proc. Natl. Acad. Sci. USA 72, 3186–3189 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez Moran, E., Armstrong, S.J., Santos, J.L., Franklin, F.C. & Jones, G.H. Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res. 9, 121–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Wijeratne, A.J., Chen, C., Zhang, W., Timofejeva, L. & Ma, H. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol. Biol. Cell. 17, 1331–1343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preuss, D., Rhee, S.Y. & Davis, R.W. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264, 1458–1460 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Copenhaver, G.P., Keith, K.C. & Preuss, D. Tetrad analysis in higher plants. A budding technology. Plant. Physiol 124, 7–26 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Twell, D., Yamaguchi, J. & McCormick, S. Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109, 705–713 (1990).

    CAS  PubMed  Google Scholar 

  44. Perkins, D.D. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics 47, 1253–1274 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stahl, F.W. & Lande, R. Estimating interference and linkage map distance from two-factor tetrad data. Genetics 139, 1449–1454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mezard, C., Vignard, J., Drouaud, J. & Mercier, R. The road to crossovers: plants have their say. Trends Genet. 23, 91–99.

  47. Perkins, D.D. Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34, 607–626 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stahl, F.W. et al. Does crossover interference count in Saccharomyces cerevisiae? Genetics 168, 35–48 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank Corbin Jones and Frank Stahl for critical reading of this manuscript. We also thank the NSF (MCB-0618691) and DOE (DE-FGO2-05ER15651) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P Copenhaver.

Supplementary information

Supplementary Fig. 1

Blank tetrad classification template (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchowitz, L., Copenhaver, G. Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nat Protoc 3, 41–50 (2008). https://doi.org/10.1038/nprot.2007.491

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.491

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing