Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Purification and characterization of transcribed RNAs using gel filtration chromatography

Abstract

RNA synthesis using in vitro transcription by phage T7 RNA polymerase allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. Previous purification approaches relied on gel electrophoretic or gravity-flow chromatography methods. We present here a protocol for the in vitro transcription of RNAs and subsequent purification using fast-performance liquid chromatography. This protocol greatly facilitates production of RNA in a single day from transcription to purification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic outline of RNA sample preparation.
Figure 2: Sample elution profiles obtained from the gel filtration chromatography step, demonstrating the separation of in vitro-transcribed RNA (10-ml reaction) from plasmid and nucleotide triphosphates (NTPs).
Figure 3: Example of a monomer/dimer equilibrium after an in vitro transcription (10-ml reaction).
Figure 4: RNA sample purity.

Similar content being viewed by others

References

  1. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  2. Puglisi, J.D. & Wyatt, J.R. Biochemical and NMR studies of RNA conformation with an emphasis on RNA pseudoknots. Methods Enzymol. 261, 323–350 (1995).

    Article  CAS  Google Scholar 

  3. Kim, I., McKenna, S.A., Puglisi, E. & Puglisi, J.D. Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13, 289–294 (2007).

    Article  CAS  Google Scholar 

  4. Lukavsky, P.J. & Puglisi, J.D. Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10, 889–893 (2004).

    Article  CAS  Google Scholar 

  5. Kim, I., Lukavsky, P.J. & Puglisi, J.D. NMR study of 100 kDa HCV IRES RNA using segmental isotope labeling. J. Am. Chem. Soc. 124, 9338–9339 (2002).

    Article  CAS  Google Scholar 

  6. Lukavsky, P.J., Kim, I., Otto, G.A. & Puglisi, J.D. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033–1038 (2003).

    Article  CAS  Google Scholar 

  7. Lukavsky, P.J., Otto, G.A., Lancaster, A.M., Sarnow, P. & Puglisi, J.D. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol. 7, 1105–1110 (2000).

    Article  CAS  Google Scholar 

  8. Egger, D., Bolten, R., Rahner, C. & Bienz, K. Fluorochrome-labeled RNA as a sensitive, strand-specific probe for direct fluorescence in situ hybridization. Histochem. Cell Biol. 111, 319–324 (1999).

    Article  CAS  Google Scholar 

  9. Hanna, M.M., Yuriev, E., Zhang, J. & Riggs, D.L. Probing the environment of nascent RNA in Escherichia coli transcription elongation complexes utilizing a new fluorescent ribonucleotide analog. Nucleic Acids Res. 27, 1369–1376 (1999).

    Article  CAS  Google Scholar 

  10. Srivatsan, S.G. & Tor, Y. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J. Am. Chem. Soc. 129, 2044–2053 (2007).

    Article  CAS  Google Scholar 

  11. Gong, P. & Martin, C.T. Mechanism of instability in abortive cycling by T7 RNA polymerase. J. Biol. Chem. 281, 23533–23544 (2006).

    Article  CAS  Google Scholar 

  12. Schenborn, E.T. & Mierendorf, R.C. Jr. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6236 (1985).

    Article  CAS  Google Scholar 

  13. Wyatt, J.R., Chastain, M. & Puglisi, J.D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11, 764–769 (1991).

    CAS  PubMed  Google Scholar 

  14. Cheong, H.K., Hwang, E., Lee, C., Choi, B.S. & Cheong, C. Rapid preparation of RNA samples for NMR spectroscopy and X-ray crystallography. Nucleic Acids Res. 32, e84 (2004).

    Article  Google Scholar 

  15. Kieft, J.S. & Batey, R.T. A general method for rapid and nondenaturing purification of RNAs. RNA 10, 988–995 (2004).

    Article  CAS  Google Scholar 

  16. McKenna, S.A. et al. Molecular framework for the activaiton of PKR 282, 11474–11486 (2007).

  17. McKenna, S.A., Lindhout, D.A., Shimoike, T., Aitken, C.E. & Puglisi, J.D. Viral dsRNA inhibitors prevent self-association and autophosphorylation of PKR. J. Mol. Biol. 372, 103–113 (2007).

    Article  CAS  Google Scholar 

  18. McKenna, S.A., Kim, I., Liu, C.W. & Puglisi, J.D. Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs. J. Mol. Biol. 358, 1270–1285 (2006).

    Article  CAS  Google Scholar 

  19. Kim, I., Liu, C.W. & Puglisi, J.D. Specific recognition of HIV TAR RNA by the dsRNA binding domains (dsRBD1-dsRBD2) of PKR. J. Mol. Biol. 358, 430–442 (2006).

    Article  CAS  Google Scholar 

  20. Draper, D.E., White, S.A. & Kean, J.M. Preparation of specific ribosomal RNA fragments. Methods Enzymol. 164, 221–237 (1988).

    Article  CAS  Google Scholar 

  21. Pleiss, J.A., Derrick, M.L. & Uhlenbeck, O.C. T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  22. Ferre-D'Amare, A.R. & Doudna, J.A. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978 (1996).

    Article  CAS  Google Scholar 

  23. Price, S.R., Ito, N., Oubridge, C., Avis, J.M. & Nagai, K. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408 (1995).

    Article  CAS  Google Scholar 

  24. Tzakos, A.G., Easton, L.E. & Lukavsky, P.J. Preparation of large RNA oligonucleotides with complementary isotope-labeled segments for NMR structural studies. Nat. Protoc. 2, 2139–2147 (2007).

    Article  CAS  Google Scholar 

  25. Gallo, S., Furler, M. & Sigel, R. In vitro transcription and purification of RNAs of different size. Chimia 59, 812–816 (2005).

    Article  CAS  Google Scholar 

  26. Walker, S.C., Avis, J.M. & Conn, G.L. General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res. 31, e82 (2003).

    Article  Google Scholar 

  27. Collins, R.A. The Neurospora Varkud satellite ribozyme. Biochem. Soc. Trans. 30, 1122–1126 (2002).

    Article  CAS  Google Scholar 

  28. Davanloo, P., Rosenberg, A.H., Dunn, J.J. & Studier, F.W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039 (1984).

    Article  CAS  Google Scholar 

  29. Hames, B.D. & Rickwood, D. (eds). Gel Electrophoresis of Proteins. Oxford University Press, New York (1981).

    Google Scholar 

  30. Puglisi, J.D. & Tinoco, I. Jr. Absorbance melting curves of RNA. Methods Enzymol. 180, 304–325 (1989).

    Article  CAS  Google Scholar 

  31. Pohl, T. Concentration of proteins and removal of solutes. Methods Enzymol. 182, 68–83 (1990).

    Article  CAS  Google Scholar 

  32. McPhie, P. Dialysis. Methods Enzymol. 22, 23–32 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D Puglisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, S., Kim, I., Puglisi, E. et al. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat Protoc 2, 3270–3277 (2007). https://doi.org/10.1038/nprot.2007.480

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.480

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing