Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis

Abstract

A comprehensive genomic analysis of single cells is instrumental for numerous applications in tumor genetics, clinical diagnostics and forensic analyses. Here, we provide a protocol for single-cell isolation and whole genome amplification, which includes the following stages: preparation of single-cell suspensions from blood or bone marrow samples and cancer cell lines; their characterization on the basis of morphology, interphase fluorescent in situ hybridization pattern and antibody staining; isolation of single cells by either laser microdissection or micromanipulation; and unbiased amplification of single-cell genomes by either linker-adaptor PCR or GenomePlex library technology. This protocol provides a suitable template to screen for chromosomal copy number changes by conventional comparative genomic hybridization (CGH) or array CGH. Expected results include the generation of several micrograms of DNA from single cells, which can be used for CGH or other analyses, such as sequencing. Using linker-adaptor PCR or GenomePlex library technology, the protocol takes 72 or 30 h, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Isolation of a single cell by LMPC using the PALM system.
Figure 3: Representative 1% agarose gel pictures from amplification products after whole genome amplification.

Similar content being viewed by others

References

  1. Speicher, M.R. & Carter, N.P. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 6, 782–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Telenius, H. et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Speicher, M.R. et al. Molecular cytogenetic analysis of archived, paraffin embedded solid tumors by comparative genomic hybridization after universal PCR. Hum. Mol. Genet. 2, 1907–1914 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Speicher, M.R. et al. Correlation of microscopic phenotype with genotype in a formalin fixed, paraffin embedded testicular germ cell tumor using universal DNA amplification, comparative genomic hybridization and interphase cytogenetics. Am. J. Path. 146, 1332–1340 (1995).

    CAS  PubMed  Google Scholar 

  5. Wiltshire, R.N. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 55, 3954–3957 (1995).

    CAS  PubMed  Google Scholar 

  6. Klein, C.A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl. Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wells, D., Sherlock, J.K., Handyside, A.H. & Delhanty, J.D. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 27, 1214–1218 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voullaire, L., Wilton, L., Slater, H. & Williamson, R. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat. Diagn. 19, 846–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Fragouli, E. et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum. Reprod. 21, 2319–2328 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, D.G., Webb, G. & Hussey, N. Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol. Hum. Reprod. 10, 283–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Gutierrez-Mateo, C. et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum. Reprod. 19, 2859–2868 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Lizardi, P.M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, X.B., Lizardi, P.M., Huang, X.H., Bray-Ward, P.L. & Ward, D.C. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl. Acad. Sci. USA 98, 3940–3945 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Lage, J.M. et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 13, 294–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. LeCaignec, C. et al. Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res. 34, e68 (2006).

    Article  Google Scholar 

  16. Spits, C. et al. Whole-genome multiple displacement amplification from single cells. Nat. Protoc. 1, 1965–1970 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Langer, S., Geigl, J.B., Gangnus, R. & Speicher, M.R. Sequential application of interphase-FISH and CGH to single cells. Lab. Invest. 85, 582–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Fiegler, H. et al. High resolution array-CGH analysis of single cells. Nucleic Acids Res. 35, e15 Epub 2006 Dec 18 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gangnus, R., Langer, S., Breit, S., Pantel, K. & Speicher, M.R. Genomic profiling of viable and proliferative micrometastatic cells from early stage breast cancer patients. Clin. Cancer Res. 10, 3457–3464 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Thalhammer, S., Langer, S., Speicher, M.R., Heckl, W.M. & Geigl, J.B. Generation of chromosome painting probes from single chromosomes by laser microdissection and linker-adaptor PCR. Chromosome Res. 12, 337–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Fiegler, H., Redon, R. & Carter, N.P. Construction and use of spotted large-insert clone DNA microarrays for the detection of genomic copy number changes. Nat. Protoc. 2, 577–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Espina, A. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Geigl, J.B., Uhrig, S. & Speicher, M.R. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat. Protoc. 1, 1172–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Snijders, A.M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29, 263–264 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission (DISMAL project, contract no. LSHC-CT-2005-018911 and GENINCA project (2022309)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jochen B Geigl or Michael R Speicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geigl, J., Speicher, M. Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis. Nat Protoc 2, 3173–3184 (2007). https://doi.org/10.1038/nprot.2007.476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing