Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Silencing of mammalian genes by tetracycline-inducible shRNA expression

Abstract

Conditional gene silencing in mammalian cells, via the controlled expression of short hairpin RNAs (shRNAs), is an effective method for studying gene function, particularly if the gene is essential for cell survival or development. Here we describe a simple and rapid protocol for the generation of tetracycline (Tet)-inducible vectors that express shRNAs in a time- and dosage-dependent manner. Tet-operator (TetO) sequences responsive to occupation by the Tet-repressor (TetR) were inserted at alternative positions within the wild-type H1 promoter and cloned into a eukaryotic expression vector. Additional cloning sites downstream of the promoter enable the insertion of shRNA sequences. This Tet-inducible shRNA expression system can be used for both transient and stable RNA interference (RNAi) approaches to control gene function in a spatiotemporal fashion. The entire protocol (preparation of constructs, generation of stable cell lines and functional analysis) can be completed in 3 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional expression of short hairpin RNA (shRNA) via tetracycline (Tet)-inducible H1 promoter constructs.
Figure 2: Map of H1 promoter variants and expression plasmid.
Figure 3: Coding sequence and structure of a typical short hairpin RNA (shRNA).
Figure 4: Comparison of plasmid DNA extracted by the modified phenol:chloroform:isoamylalcohol (PCI) or by standard methods.
Figure 5: Downregulation of Polo-like kinase 1 (Plk1) by tetracycline (Tet)-inducible expression of short hairpin RNA (shRNA).

Similar content being viewed by others

References

  1. Sharpless, N.E. & Depinho, R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Le, Y. & Sauer, B. Conditional gene knockout using cre recombinase. Methods Mol. Biol. 136, 477–485 (2000).

    CAS  PubMed  Google Scholar 

  3. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda, Y., Kawasaki, H. & Taira, K. Construction of microRNA-containing vectors for expression in mammalian cells. Methods Mol. Biol. 338, 167–173 (2006).

    CAS  PubMed  Google Scholar 

  7. Chang, H.S., Lin, C.H., Chen, Y.C. & Yu, W.C. Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am. J. Pathol. 165, 1535–1541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coumoul, X., Shukla, V., Li, C., Wang, R.H. & Deng, C.X. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 33, e102 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seibler, J. et al. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coumoul, X., Li, W., Wang, R.H. & Deng, C. Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res. 32, e85 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu, J. & McMahon, A.P. Reproducible and inducible knockdown of gene expression in mice. Genesis 44, 252–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Tiscornia, G., Tergaonkar, V., Galimi, F. & Verma, I.M. CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 7347–7351 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palli, S.R., Kapitskaya, M.Z., Kumar, M.B. & Cress, D.E. Improved ecdysone receptor-based inducible gene regulation system. Eur. J. Biochem. 270, 1308–1315 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rangasamy, D., Greaves, I. & Tremethick, D.J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Biol. 11, 650–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Greaves, I.K., Rangasamy, D., Ridgway, P. & Tremethick, D.J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl. Acad. Sci. USA 104, 525–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, R.H. et al. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells. J. Gene Med. 9, 620–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Higuchi, M., Tsutsumi, R., Higashi, H. & Hatakeyama, M. Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Sci. 95, 442–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsukura, S., Jones, P.A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matthess, Y. et al. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 24, 2973–2980 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kappel, S., Matthess, Y., Zimmer, B., Kaufmann, M. & Strebhardt, K. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res. 34, 4527–4536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thiesen, H.J., Bellefroid, E., Revelant, O. & Martial, J.A. Conserved KRAB protein domain identified upstream from the zinc finger region of Kox 8. Nucleic Acids Res. 19, 3996 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holtrich, U. et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc. Natl. Acad. Sci. USA 91, 1736–1740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noonberg, S.B., Scott, G.K. & Benz, C.C. Evidence of post-transcriptional regulation of U6 small nuclear RNA. J. Biol. Chem. 271, 10477–10481 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L., Yang, N., Mohamed-Hadley, A., Rubin, S.C. & Coukos, G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. 303, 1169–1178 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Henriksen, J.R. et al. Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res. 35, e67 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hannon, G.J. et al. Multiple cis-acting elements are required for RNA polymerase III transcription of the gene encoding H1 RNA, the RNA component of human RNase P. J. Biol. Chem. 266, 22796–22799 (1991).

    CAS  PubMed  Google Scholar 

  35. Myslinski, E., Ame, J.C., Krol, A. & Carbon, P. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res. 29, 2502–2509 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hanahan, D., Jessee, J. & Bloom, F.R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 204, 63–113 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Sambrook, J.R. & Russell, D.W. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

  39. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Nationales Genomforschungsnetz Deutschland (NGFN), Messer Stiftung, Sander Stiftung, Deutsche Krebshilfe, Schleussner Stiftung, Else Kröner-Fresenius-Stiftung and Carls-Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and Y.M. contributed equally to this work.

Corresponding author

Correspondence to Klaus Strebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappel, S., Matthess, Y., Kaufmann, M. et al. Silencing of mammalian genes by tetracycline-inducible shRNA expression. Nat Protoc 2, 3257–3269 (2007). https://doi.org/10.1038/nprot.2007.458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.458

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing