Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe

Abstract

Reversible protein phosphorylation is a major regulatory mechanism in a cell. A chemical-genetic strategy to conditionally inactivate protein kinases has been developed recently. Mutating a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors. The inhibitor can only bind to the mutant kinase and not to any other wild-type kinase, allowing specific inactivation of the modified kinase. Here, we describe a protocol to construct conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. This protocol can be completed in about 3 weeks and should be applicable to other organisms as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for sensitizing protein kinases to small-molecule inhibitors.
Figure 2
Figure 3
Figure 4: Sensitivity of cells expressing Hhp1-as to various inhibitors.

Similar content being viewed by others

References

  1. Zeidler, M.P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat. Biotechnol. 22, 871–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gregan, J. et al. Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol. Biol. Cell 14, 3876–3887 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Labib, K., Tercero, J.A. & Diffley, J.F. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nurse, P., Thuriaux, P. & Nasmyth, K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146, 167–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Lindner, K., Gregan, J., Montgomery, S. & Kearsey, S.E. Essential role of MCM proteins in premeiotic DNA replication. Mol. Biol. Cell 13, 435–444 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gregan, J. et al. Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr. Biol. 15, 1663–1669 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Knight, Z.A. & Shokat, K.M. Chemical genetics: where genetics and pharmacology meet. Cell 128, 425–430 (2007).

    Article  CAS  Google Scholar 

  9. Carroll, A.S., Bishop, A.C., DeRisi, J.L., Shokat, K.M. & O'Shea, E.K. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12578–12583 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Buzko, O. & Shokat, K.M. A kinase sequence database: sequence alignments and family assignment. Bioinformatics 18, 1274–1275 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Burkard, M.E. et al. Chemical genetics reveals the requirement for polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl. Acad. Sci. USA 104, 4383–4388 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Wan, L., Zhang, C., Shokat, K.M. & Hollingsworth, N.M. Chemical inactivation of cdc7 kinase in budding yeast results in a reversible arrest that allows efficient cell synchronization prior to meiotic recombination. Genetics 174, 1767–1774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ventura, J.J. et al. Chemical genetic analysis of the time course of signal transduction by JNK. Mol. Cell 21, 701–710 (2006).

    Article  CAS  Google Scholar 

  16. Pinsky, B.A., Kung, C., Shokat, K.M. & Biggins, S. The Ipl1-aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat. Cell Biol. 8, 78–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. D'Aquino, K.E. et al. The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol. Cell 19, 223–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, M.H. et al. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr. Biol. 15, 160–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Habelhah, H. et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 276, 18090–18095 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Shokat, K. & Velleca, M. Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discov. Today 7, 872–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Shah, K. & Shokat, K.M. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 9, 35–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hwang, Y.W. & Miller, D.L. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. J. Biol. Chem. 262, 13081–13085 (1987).

    CAS  PubMed  Google Scholar 

  23. Hoffman, H.E., Blair, E.R., Johndrow, J.E. & Bishop, A.C. Allele-specific inhibitors of protein tyrosine phosphatases. J. Am. Chem. Soc. 127, 2824–2825 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Holt, J.R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Gillespie, P.G., Gillespie, S.K., Mercer, J.A., Shah, K. & Shokat, K.M. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J. Biol. Chem. 274, 31373–31381 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kapoor, T.M. & Mitchison, T.J. Allele-specific activators and inhibitors for kinesin. Proc. Natl. Acad. Sci. USA 96, 9106–9111 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, C. et al. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat. Methods 2, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kearney, P.H., Ebert, M. & Kuret, J. Molecular cloning and sequence analysis of two novel fission yeast casein kinase-1 isoforms. Biochem. Biophys. Res. Commun. 203, 231–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Dhillon, N. & Hoekstra, M.F. Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair. EMBO J. 13, 2777–2788 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petronczki, M. et al. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126, 1049–1064 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Cohen, S.N., Chang, A.C. & Hsu, L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110–2114 (1972).

    Article  CAS  Google Scholar 

  33. Gregan, J. et al. High-throughput knockout screen in fission yeast. Nat. Protoc. 1, 2457–2464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839–850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaeschke, A. et al. JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23, 899–911 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (P18955-B03). L.C. was a recipient of EMBO and FEBS short-term fellowships. We thank Mark Petronczki and Maria Siomos for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Gregan.

Supplementary information

Supplementary Table 1

S. pombe protein kinases with the corresponding gate-keeper residue. (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregan, J., Zhang, C., Rumpf, C. et al. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat Protoc 2, 2996–3000 (2007). https://doi.org/10.1038/nprot.2007.447

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.447

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing