Protocol | Published:

Construction and calibration of an optical trap on a fluorescence optical microscope

Nature Protocols volume 2, pages 32263238 (2007) | Download Citation

Subjects

Abstract

The application of optical traps has come to the fore in the last three decades. They provide a powerful, sterile and noninvasive tool for the manipulation of cells, single biological macromolecules, colloidal microparticles and nanoparticles. An optically trapped microsphere may act as a force transducer that is used to measure forces in the piconewton regime. By setting up a well-calibrated single-beam optical trap within a fluorescence microscope system, one can measure forces and collect fluorescence signals upon biological systems simultaneously. In this protocol, we aim to provide a clear exposition of the methodology of assembling and operating a single-beam gradient force trap (optical tweezers) on an inverted fluorescence microscope. A step-by-step guide is given for alignment and operation, with discussion of common pitfalls.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).

  2. 2.

    , , & Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

  3. 3.

    et al. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum. 75, 2197–2210 (2004).

  4. 4.

    & Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).

  5. 5.

    et al. Membrane tether formation from outer hair cells with optical tweezers. Biophys. J. 82, 1386–1395 (2002).

  6. 6.

    , & Behavior of complex knots in single DNA molecules. Phys. Rev. Lett. 91, 265506 (2003).

  7. 7.

    , , & Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

  8. 8.

    , & Single myosin molecule mechanics—piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

  9. 9.

    et al. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

  10. 10.

    et al. Detecting force-induced molecular transitions with fluorescence resonant energy transfer. Angew. Chem. Int. Ed. Engl. 46, 1999–2001 (2007).

  11. 11.

    , & Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

  12. 12.

    , , & Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

  13. 13.

    & Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

  14. 14.

    , & Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Select. Top. Quant. Electron. 2, 1066–1076 (1996).

  15. 15.

    & Resource letter: LBOT-1: LASER-based optical tweezers. Am. J. Phys. 71, 201–215 (2003).

  16. 16.

    & Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

  17. 17.

    & Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).

  18. 18.

    et al. Inexpensive optical tweezers for undergraduate laboratories. Am. J. Phys. 67, 26–35 (1999).

  19. 19.

    & Faster, cheaper, safer optical tweezers for the undergraduate laboratory. Am. J. Phys. 70, 393–400 (2002).

  20. 20.

    , , & Optical trapping for undergraduates. Am. J. Phys. 75, 5–14 (2007).

  21. 21.

    et al. Optimized holographic optical traps. Opt. Express 13, 5831–5845 (2005).

  22. 22.

    & Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

  23. 23.

    & Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

  24. 24.

    et al. Beth's experiment using optical tweezers. Am. J. Phys. 69, 271–276 (2001).

  25. 25.

    & Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004).

  26. 26.

    et al. Temperature control methods in a laser tweezers system. Biophys. J. 89, 1308–1316 (2005).

  27. 27.

    , , & Force detection in optical tweezers using backscattered light. Opt. Express 13, 1113–1123 (2005).

  28. 28.

    et al. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

  29. 29.

    & Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. Opt. Commun. 193, 45–50 (2001).

  30. 30.

    , & MatLab program for precision calibration of optical tweezers. Comput. Phys. Commun. 159, 225–240 (2004).

  31. 31.

    , , & Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

  32. 32.

    , & Single-beam trapping in front of reflective surfaces. Opt. Lett. 26, 1466–1468 (2001).

Download references

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council. We acknowledge several useful discussions with Daniel Burnham.

Author information

Affiliations

  1. SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK.

    • Woei Ming Lee
    • , Peter J Reece
    • , Robert F Marchington
    • , Nikolaus K Metzger
    •  & Kishan Dholakia

Authors

  1. Search for Woei Ming Lee in:

  2. Search for Peter J Reece in:

  3. Search for Robert F Marchington in:

  4. Search for Nikolaus K Metzger in:

  5. Search for Kishan Dholakia in:

Corresponding author

Correspondence to Kishan Dholakia.

Supplementary information

PDF files

  1. 1.

    Supplementary Figure 1

    Sample Chamber

  2. 2.

    Supplementary Note 1

    Dual beam optical tweezers system

  3. 3.

    Supplementary Note 2

    Sample preparation

  4. 4.

    Supplementary Note 3

    Q values

  5. 5.

    Supplementary Note 4

    Trap stiffness

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nprot.2007.446

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.