Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach

Abstract

This protocol presents the synthesis and peptide incorporation of environment-sensitive fluorescent amino acids derived from the dimethylamino-phthalimide family. The procedure uses anhydride precursors of 4-dimethylaminophthalimide (4-DMAP) or 6-dimethylaminonaphthalimide (6-DMN), whose syntheses are described in a related protocol by these authors. In this study, the corresponding fluorescent amino acids can be readily obtained in Fmoc-protected form for convenient use as building blocks in solid phase peptide synthesis (SPPS). The time required to complete the procedure depends on the size and the number of peptides targeted. Alternatively, the chromophores can be incorporated directly after SPPS via on-resin derivatization of peptides, which is an option described in a related protocol by these authors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General approaches for the insertion of the environment-sensitive fluorophores 6-dimethylaminonaphthalimide (6-DMN) or 4-dimethylaminophthalimide (4-DMAP) into peptides (illustrated here with 6-DMN insertion).
Figure 2: Synthesis of Fmoc-protected 4-N,N,-dimethylaminophthalimidoalanine (1) and 6-N,N-dimethylamino-2,3-naphthalimidoalanine (2).

Similar content being viewed by others

References

  1. Schiller, P.W. et al. Type and location of fluorescent probes incorporated into the potent μ-opioid peptide [Dmt1]DALDA affect potency, receptor selectivity and intrinsic efficacy. J. Pept. Res. 65, 556–563 (2005).

    Article  CAS  Google Scholar 

  2. Harikumar, K.G., Pinon, D.I. & Miller, L.J. Fluorescent indicators distributed throughout the pharmacophore of cholecystokinin provide insights into distinct modes of binding and activation of type A and B cholecystokinin receptors. J. Biol. Chem. 281, 27072–27080 (2006).

    Article  CAS  Google Scholar 

  3. Venkatraman, P. et al. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nat. Chem. Biol. 3, 222–228 (2007).

    Article  CAS  Google Scholar 

  4. Sloan, D.J. & Hellinga, H.W. Structure-based engineering of environmentally sensitive fluorophores for monitoring protein-protein interactions. Protein Eng. 11, 819–823 (1998).

    Article  CAS  Google Scholar 

  5. Worsham, L.M. et al. Amino acid residues of Escherichia coli acyl carrier protein involved in heterologous protein interactions. Biochemistry 42, 167–176 (2003).

    Article  CAS  Google Scholar 

  6. Tan, X. et al. Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B 108, 737–744 (2004).

    Article  CAS  Google Scholar 

  7. Toutchkine, A., Kraynov, V. & Hahn, K. Solvent-sensitive dyes to report protein conformational changes in living cells. J. Am. Chem. Soc. 125, 4132–4145 (2003).

    Article  CAS  Google Scholar 

  8. Cohen, B.E. et al. A fluorescent probe designed for studying protein conformational change. Proc. Natl. Acad. Sci. USA 102, 965–970 (2005).

    Article  CAS  Google Scholar 

  9. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  Google Scholar 

  10. Brune, M., Corrie, J.E. & Webb, M.R. A fluorescent sensor of the phosphorylation state of nucleoside diphosphate kinase and its use to monitor nucleoside diphosphate concentrations in real time. Biochemistry 40, 5087–5094 (2001).

    Article  CAS  Google Scholar 

  11. Yeh, R.H., Yan, X., Cammer, M., Bresnick, A.R. & Lawrence, D.S. Real time visualization of protein kinase activity in living cells. J. Biol. Chem. 277, 11527–11532 (2002).

    Article  CAS  Google Scholar 

  12. Vazquez, M.E., Nitz, M., Stehn, J., Yaffe, M.B. & Imperiali, B. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations. J. Am. Chem. Soc. 125, 10150–10151 (2003).

    Article  CAS  Google Scholar 

  13. Eugenio Vazquez, M., Rothman, D.M. & Imperiali, B. A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Org. Biomol. Chem. 2, 1965–1966 (2004).

    Article  CAS  Google Scholar 

  14. Vázquez, M.E., Blanco, J.B. & Imperiali, B. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-Dimethylamino-2,3-naphthalimide. J. Am. Chem. Soc. 127, 1300–1306 (2005).

    Article  Google Scholar 

  15. Sainlos, M. & Imperiali, B. Synthesis of anhydride precursors of the environment-sensitive fluorophores 4-DMAP and 6-DMN. Nat. Protoc. 2, 3219–3225 (2007).

    Article  CAS  Google Scholar 

  16. Sainlos, M. & Imperiali, B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat. Protoc. 2, 3201–3209 (2007).

    Article  CAS  Google Scholar 

  17. Hachmann, J. & Lebl, M. Alternative to piperidine in Fmoc solid-phase synthesis. J. Comb. Chem. 8, 149–149 (2006).

    Article  CAS  Google Scholar 

  18. Endres, W. Synthesis of phthalic acid diamides. Arch. Pharm. (Weinheim) 305, 571–579 (1972).

    Article  CAS  Google Scholar 

  19. Garcia-Valverde, M., Pascual, R. & Torroba, T. Synthesis, chemistry and dynamic NMR study of new atropisomeric 4-dialkylamino-5-chloro-1,2-dithiole-3-thiones. Org. Lett. 5, 929–932 (2003).

    Article  CAS  Google Scholar 

  20. Wade, J.D., Bedford, J., Sheppard, R.C. & Tregear, G.W. DBU as an Nα-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199 (1991).

    CAS  Google Scholar 

  21. Tickler, A.K., Barrow, C.J. & Wade, J.D. Improved preparation of amyloid-βpeptides using DBU as Nα-Fmoc deprotection reagent. J. Pept. Sci. 7, 488–494 (2001).

    Article  CAS  Google Scholar 

  22. Lauer, J.L., Fields, C.G. & Fields, G.B. Sequence dependence of aspartimide formation during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Lett. Pept. Sci. 1, 197–205 (1995).

    Article  CAS  Google Scholar 

  23. Quibell, M., Owen, D., Packman, L.C. & Johnson, T. Suppression of piperidine-mediated side product formation for Asp(OBut)-containing peptides by the use of N-(2-hydroxy-4-methoxybenzyl) (Hmb) backbone amide protection. J. Chem. Soc. Chem. Comm. 2343, (1994).

  24. Hancock, W.S. & Battersby, J.E. New micro-test for detection of incomplete coupling reactions in solid-phase peptide-synthesis using 2,4,6-trinitrobenzene-sulphonic acid. Anal. Biochem. 71, 260–264 (1976).

    Article  CAS  Google Scholar 

  25. Vojkovsky, T. Detection of secondary-amines on solid-phase. Pept. Res. 8, 236–237 (1995).

    CAS  PubMed  Google Scholar 

  26. Fmoc Solid Phase Peptide Synthesis: A Practical Approach (eds. Chan, W.C. & White, P.D.) (Oxford University Press, Oxford, 2000).

  27. Quibell, M. & Johnson, T. Difficult peptides. In Fmoc Solid Phase Peptide Synthesis (eds. Chan, W.C. & White, P.D.) 115–135 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  28. Haack, T. & Mutter, M. Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis. Tetrahedron Lett. 33, 1589–1592 (1992).

    Article  CAS  Google Scholar 

  29. Wohr, T. et al. Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J. Am. Chem. Soc. 118, 9218–9227 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF CHE-0414243 (B.I.) and the Cell Migration Consortium (GM064346). The award of a Marie Curie Fellowship to M.S. is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Imperiali.

Ethics declarations

Competing interests

The authors declare that a patent on the environment-sensitive fluorophores is pending: 'Fluorescent Probes for Biological Studies' by Imperiali et al. US Patent Application serial No. 11/106,349, filed April 13, 2005, pending.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainlos, M., Imperiali, B. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nat Protoc 2, 3210–3218 (2007). https://doi.org/10.1038/nprot.2007.443

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.443

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing