Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of large RNA oligonucleotides with complementary isotope-labeled segments for NMR structural studies

Abstract

RNA structure determination by solution NMR spectroscopy is often restricted to small RNAs (<15 kDa) owing to the problem of chemical shift degeneracy. A fruitful coupling of novel NMR techniques with segmental RNA labeling methodologies could be a powerful tool to overcome the molecular mass limitation of RNA NMR spectroscopy. Herein, we describe a time- and cost-effective procedure to prepare and purify segmentally labeled large RNAs. Two sets of RNA fragments with complementary labeling schemes, such as one fragment 13C- and the other 15N-labeled, are prepared by in vitro transcription from a single plasmid DNA. The desired RNA fragments are excised from the primary transcript by two cis-acting hammerhead ribozymes, yielding the required engineered ends for subsequent, complementary ligation. The resulting RNA oligonucleotides display NMR spectra with greatly reduced resonance overlap and thus enable NMR studies of smaller labeled RNA segments within the native context of a large RNA. The procedure is expected to take 3–4 weeks to implement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of linked, cis-acting hammerhead ribozymes.
Figure 2: Cloning strategy to prepare plasmid template with linked cis-acting hammerhead ribozymes and products of in vitro transcription.
Figure 3: Complementary segmental labeling yields simplified NMR spectra.

Similar content being viewed by others

References

  1. Varani, G., Aboul-Ela, F. & Allain, F. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  2. Furtig, B., Richter, C., Wohnert, J. & Schwalbe, H. NMR spectroscopy of RNA. ChemBioChem 4, 936–962 (2003).

    Article  PubMed  Google Scholar 

  3. Latham, M.P., Brown, D.J., McCallum, S.A. & Pardi, A. NMR methods for studying the structure and dynamics of RNA. Chembiochem 6, 1492–1505 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H., Vermeulen, A., Jucker, F.M. & Pardi, A. Incorporating residual dipolar couplings into the NMR solution structure determination of nucleic acids. Biopolymers 52, 168–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hansen, M.R., Hanson, P. & Pardi, A. Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol. 317, 220–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Mollova, E.T. & Pardi, A. NMR solution structure determination of RNAs. Curr. Opin. Struct. Biol. 10, 298–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lukavsky, P.J. & Puglisi, J.D. Structure determination of large biological RNAs. Methods Enzymol. 394, 399–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lukavsky, P.J., Kim, I., Otto, G.A. & Puglisi, J.D. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033–1038 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. D'Souza, V., Dey, A., Habib, D. & Summers, M.F. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J. Mol. Biol. 337, 427–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y. et al. Structure of stem-loop IV of Tetrahymena telomerase RNA. EMBO J. 25, 3156–3166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, I., Lukavsky, P.J. & Puglisi, J.D. NMR study of 100 kDa HCV IRES RNA using segmental isotope labeling. J. Am. Chem. Soc. 124, 9338–9339 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Tzakos, A.G., Easton, L.E. & Lukavsky, P.J. Complementary segmental labeling of large RNAs: economic preparation and simplified NMR spectra for measurement of more RDCs. J. Am. Chem. Soc. 128, 13344–13345 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Ferbeyre, G., Bourdeau, V., Pageau, M., Miramontes, P. & Cedergren, R. Distribution of hammerhead and hammerhead-like RNA motifs through the GenBank. Genome Res. 10, 1011–1019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tiedge, H., Zhou, A., Thorn, N.A. & Brosius, J. Transport of BC1 RNA in hypothalamo-neurohypophyseal axons. J. Neurosci. 13, 4214–4219 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Batey, R.T., Battiste, J.L. & Williamson, J.R. Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 261, 300–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Wang, E. & Wang, Y. A modified procedure for fast purification of T7 RNA polymerase. Protein Expr. Purif. 16, 355–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  20. Ausubel, F.M. et al. (eds). Short Protocols in Molecular Biology: A Compedium of Methods. (John Wiley & Sons Inc., New York, 2002).

    Google Scholar 

  21. Tanner, N.K. et al. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr. Biol. 4, 488–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, H.C. & Collins, R.A. Efficient trans-cleavage of a stem–loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J. 14, 368–376 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.G.T. is grateful for an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J Lukavsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzakos, A., Easton, L. & Lukavsky, P. Preparation of large RNA oligonucleotides with complementary isotope-labeled segments for NMR structural studies. Nat Protoc 2, 2139–2147 (2007). https://doi.org/10.1038/nprot.2007.306

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.306

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing