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In this protocol, we present a procedure to analyze and visualize models of neuronal input–output functions that have a quadratic,

a linear and a constant term, to determine their overall behavior. The suggested interpretations are close to those given by

physiological studies of neurons, making the proposed methods particularly suitable for the analysis of receptive fields resulting

from physiological measurements or model simulations.

INTRODUCTION
Research in neuroscience has seen a recent trend toward the
extension of receptive field (RF) estimation techniques and theo-
retical principles from linear to non-linear models. This develop-
ment has led to the need for new tools to interpret and visualize
non-linear functions. This protocol presents a number of methods
that were developed, in the context of a computational model of the
visual cortex1,2, to analyze quadratic forms as neuronal RFs.

Quadratic forms are used in experimental studies as quadratic
approximations to the input–output function of neurons and can
be derived from neural data as Volterra/Wiener approximations up
to the second order3–13. In addition, several theoretical studies have
defined quadratic models of neuronal RFs either explicitly2,14,15 or
implicitly as neural networks16–18. This choice is justified by the fact
that quadratic forms constitute a computationally rich function
space that contains interesting elements (e.g., the standard energy
model of complex cells19) while still having a reasonably small
number of parameters. This protocol does not present a new
technique to estimate neuronal RFs, but rather a procedure to
analyze the estimation performed by studies such as those cited
above. To illustrate the proposed methods, we make use of the
results of the theoretical model presented in refs. 1 and 2 (see
ANTICIPATED RESULTS).

We write quadratic forms, here also referred to as ‘units’, in vector
notation as

gðxÞ ¼ 1
2x

THx|fflffl{zfflffl}
quadratic term

+ fTx|{z}
linear term

+ c; ð0:1Þ

where x is an N-dimensional input vector, H a symmetric N � N
matrix, f an N-dimensional vector and c a constant. Such a quadratic
form is called ‘inhomogeneous’ because it contains a linear and a
constant term. We will also consider the simpler homogeneous case
with f ¼ 0. In the model system presented in this paper, the input x
is, for example, an image patch reshaped as a vector.

After some introductory remarks in Step 1, the second step in the
protocol provides a generic visualization of a quadratic form in terms

of its eigenvector decomposition. This step is interesting as a reference
because it has often been used in previous studies in combination
with a statistical analysis of the significance of the eigenvalues (see
Step 7). However, the outcome is, in general, difficult to interpret, and
it ignores the contribution of the linear term.

In Step 3, we compute the ‘optimal excitatory’ and ‘optimal
inhibitory stimulus’ of a unit. This is equivalent to the physiological
characterization of a neuron in terms of the stimulus to which it
responds the most or by which it is most inhibited, respectively. The
optimal excitatory stimulus can be subsequently used to compute
the preferred stimulus parameters. For instance, in experiments
concerning the visual system, one could compute the position and
size of the RF and its preferred orientation and frequency. This
information could then be used in successive experiments with
sine gratings.

In a linear model, the optimal excitatory stimulus would give a
complete description of the RF. As a quadratic form is non-linear,
the optimal stimuli give only partial information about the
response properties. Additional information can be obtained by
computing the invariances at the optimal stimulus, i.e., the trans-
formations of the stimuli to which the function is most invariant
(Step 4). Invariances are a common concept in physiology: neurons
are thought to respond strongly to a given stimulus but to be
insensitive to changes in some of its properties. For example,
complex cells in the primary V1 are commonly described as
being optimally responsive to a sine grating of a particular
frequency and orientation while being insensitive to its phase.
The following three steps (Steps 5–7) are used to visualize the
invariances and to determine which of them are statistically
significant.

The detailed mathematical derivation of the equations used
in this protocol can be found in ref. 20, and the mathematical
terms used in the procedure are defined in Table 1. This article
focuses on the practical use of the algorithms and on their
implementation.

MATERIALS
A Matlab implementation of the algorithms described in this protocol
(Boxes 1 and 2) is available at http://www.gatsby.ucl.ac.uk/~berkes/
software/qforms-tk/. The algorithms are also part of the MDP

Python library (Berkes, P. and Zito, T., Modular Toolkit for
Data Processing (version 2.0), http://mdp-toolkit.sourceforge.net,
2006).
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PROCEDURE
1| Normalize the quadratic form. The analysis starts with a given quadratic form provided, for instance, by a model simulation
or a physiological experiment. Without loss of generality, we assume that the quadratic form is normalized such that
matrix H is symmetric, the neutral stimulus (usually an average or blank stimulus) is zero, and the response to the
neutral stimulus is zero as well, so that positive responses are
excitatory and negative ones are inhibitory. This can be easily
achieved by shifting the coordinate systems and by making H
symmetric. If x

0
0 indicates the actual, possibly non-zero,

neutral stimulus and

g
0 ðx 0 Þ ¼ 1

2
x

0 T
H

0
x

0
+f

0 T
x

0
+c

0 ð1:1Þ

is the original quadratic form with a possibly non-symmetric
H¢, then shifting the input coordinate system by �x

0

0 and the
output coordinate system by �g¢(x 0

0) yields the required
normalized form

gðxÞ :¼g
0 ðx+x

0

0Þ � g0ðx 0

0Þ

¼ 1

2
ðx+x

0

0Þ
TH

0 ðx+x
0

0Þ+f
0 Tðx+x

0

0Þ+c0 � g0ðx 0

0Þ;

¼ 1

2
xTHx+fTx

ð1:2Þ

with

H :¼ 1

2
ðH 0

+H
0 TÞ; ð1:3Þ

f :¼ Hx
0

0 + f
0
; ð1:4Þ

where H now has the required symmetry. Given a stimulus
x or a response g(x) in the normalized coordinate system,
the input or output in the original space is recovered simply
by adding x0

0 or g0(x0
0), respectively. Although after

normalization the constant term falls off, in the rest of the
protocol we are going to provide results for general quadratic
forms with ca0, which might be useful in some particular
situations.

2| Visualize the eigenvectors of H in descending order. This
optional step is given for comparison with the conventional
analysis of quadratic models of RFs, which comprises the visua-
lization of the eigenvectors v1,y,vN of the quadratic term H,
sorted by decreasing eigenvalues m1 Z m2 Z ?ZmN. If the
input data have a 2D spatial arrangement (e.g., in case of
image patches), the eigenvectors can be visualized as a series
of patches by reshaping the vectors vi to match the structure
of the input (see Fig. 1). Eigenvectors corresponding to
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TABLE 1 | Definition of mathematical terms.

N Dimensionality of the input space
g The inhomogeneous quadratic form
H, hi N � N matrix of the quadratic term of g and the i-th row of H. H is assumed to be symmetric
vi, mi The i-th eigenvector and eigenvalue of H, sorted by decreasing eigenvalues (i.e., m1 Z m2 Z yZmN)
V, D Matrix of the eigenvectors V ¼ (v1,yvN) and diagonal matrix of the eigenvalues, so that VTHV ¼ D
f N-dimensional vector of the linear term of g
c Scalar value of the constant term of g
x+, x� Optimal excitatory and inhibitory stimuli, ||x+|| ¼ ||x�|| ¼ r

BOX 1 | PSEUDOCODE OF THE ALGORITHM
THAT COMPUTES THEOPTIMAL EXCITATORY
STIMULUS OF THE INHOMOGENEOUS
QUADRATIC FORM (STEP 3)

In the following code, A¢ means ‘A transposed’. The algorithm
can be used to compute the optimal inhibitory stimulus by
applying it to the negative of the quadratic form.

input: H, f, c: quadratic form
r: norm of the solution (± eps)
eps: tolerance of norm(x) from r

output: x_max: optimal excitatory stimulus x+

# compute the eigenvalues and eigenvectors of H
1- mu(1), ..., mu(N) :¼ eigenvalues(H)
2- v(1), ..., v(N) :¼ eigenvectors(H)

# compute the coefficients of the eigenvector
# decomposition of f (eqns. 3.3, 3.4)

3- alpha(i) :¼ v(i)¢*f
# compute the range of the parameter lambda

4- lambda_left :¼ max(mu)
5- lambda_right :¼ norm(f)/r + max(mu)

# search by bisection until norm(x)^2 ¼ r^2
# norm_x_2 holds the value of norm(x)^2
# at the current lambda

6- norm_x_2 :¼ 0
7- while abs(sqrt(norm_x_2)-r) 4 eps:

# bisect the interval
8- lambda ¼ (lambda_right-lambda_left)/2 + lambda_left

# compute the eigenvalues of (lambda*I – H)^-1
9- beta(i) :¼ 1/(lambda-mu(i))

# compute norm(x)^2 at lambda (eqn. 3.4)
10- norm_x_2 ¼ sum(beta(i)^2 * alpha(i)^2)

# update the interval limits
11- if norm_x_2 4 r^2:
12- lambda_left ¼ lambda
13- else:
14- lambda_right ¼ lambda

# lambda found, compute the solution (eqn. 3.3)
15- x_max ¼ sum(beta(i)*v(i)*alpha(i))
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positive or negative eigenvalues give excitatory and inhibitory contributions, respectively, as the quadratic term can be
rewritten as

1

2
xTHx ¼ 1

2

XN
i¼1

miðvTi xÞ
2: ð2:1Þ

Stimuli belonging to the space spanned by the eigenvectors with largest positive eigenvalues (i.e., all stimuli formed by a linear
combination x ¼ a1v1 + ? aKvK of those eigenvectors) are thus going to elicit a strong response in the unit, and, conversely,
points in the space spanned by those eigenvectors with largest negative eigenvalues are going to strongly inhibit the unit. This
form of visualization has several problems. First, although the first and the last eigenvector typically have a very clear structure
that is easy to interpret, the next ones very quickly look unstructured and do not lend themselves to an intuitive interpretation.
Second, assume we are interested in the set of stimuli that yield a strong response of, say, more than 80% of the maximum
response (given a certain stimulus energy). Some of the eigenvectors that would be discarded because they yield a response of
less than 80% could still be necessary to generate stimuli that yield such a strong response (see Step 4 in the homogeneous
case). Third, this method does not take into account the contribution of the linear term, which cannot generally be neglected5.
The following steps describe an alternative method based on optimal stimuli and their invariances that does not suffer from
these problems.

3| Compute the optimal stimuli x+ and x�. The optimal excitatory stimulus x+ (also called the ‘preferred stimulus’ in the
literature) is defined as the input vector that maximizes the output of the model neuron given a fixed energy ||x+|| ¼ r. The fixed
energy constraint is necessary to make the problem well posed. Without such a constraint, arbitrarily high outputs can be gener-
ated if only the input is large enough in amplitude and points in a direction where the quadratic term is positive. This constraint
is also the reason the quadratic form should be defined such that x ¼ 0 is the neutral stimulus relative to which stimulus energy is
measured. (As an alternative one could use the constraint jjx � x

0
0jj ¼ r, with x¢0 indicating the neutral stimulus, but this would

clutter the analysis.) The optimal stimulus is thus defined by the following equations:

Maximize

gðxÞ ¼ 1

2
xTHx+fTx+c ð3:1Þ

under the constraint

jjxjj ¼ r: ð3:2Þ
It can be shown20 that the solution is unique in general and has the form x ¼ (lI � H)�1 f, where l is a scalar between m1 and
fk k
r +m1. The solution can therefore be found by searching over l until Constraint 3.2 is satisfied.
The vector x and norm ||x|| can be efficiently computed for each l using the expressions

x ¼
X
i

1

l� mi
viðvTi fÞ ð3:3Þ

and

xk k2¼
X
i

1

l� mi

� �2

ðvTi fÞ
2: ð3:4Þ

The terms vi(vi
Tf) and (vi

Tf)2 are constant for a given quadratic form and can be computed in advance. As the norm of x is mono-
tonically decreasing in the considered interval (Equation 3.4), the search can be performed efficiently using a simple bisection
method. The pseudocode yielding the desired result is shown in Box 1. In the same way, it is possible to compute the optimal
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Unit 4

6.56 6.54 4.72 4.64 3.81

. . .

. . .

–2.89 –3.69 –4.96–3.74 –5.00

12.23 12.10 6.38 6.24 6.04 –6.52 –7.93 –11.72–8.08 –12.03

Unit 28

Figure 1 | Eigenvectors of the quadratic term of two units learned in the simulation. The corresponding eigenvalues are indicated above the eigenvectors.

402 | VOL.2 NO.2 | 2007 | NATURE PROTOCOLS

PROTOCOL



inhibitory stimulus x� by minimizing Equation (3.1), which is
equivalent to maximizing �g(x). x� is the stimulus that most
effectively inhibits the response of the unit.

Figure 2 shows optimal stimuli for units from the model
simulation. If the quadratic form is homogeneous, the optimal
excitatory stimulus points in the direction of the first eigen-
vector and is given by

x+ ¼ �r v1: ð3:5Þ
In the same way, the optimal inhibitory stimulus is given by
x� ¼ � r vN. This is one of the cases where the optimal stimuli
are not unique but determined only up to the sign. If in addi-
tion the first eigenvalues were equal, any normalized linear
combination of the corresponding eigenvectors would be an
optimal stimulus.

4| Compute the invariances at x+ and x�. The optimal excita-
tory and inhibitory stimuli give us a first impression of the
response properties of a unit and two anchor points at which
we can refine the analysis. In this step we compute the invar-
iances at the optimal stimuli, i.e., the transformations of x+

and x� to which the unit is most invariant. As in Step 3, we
consider inputs of constant energy r, because otherwise a
change in the response as we vary the direction of x around x+

could always be compensated by a change of length (i.e.,
energy) of x. Notice that around x+ the response can only drop
and around x� it can only rise, because the optimal stimuli are
extremal points. Mathematically we have to derive the quadra-
tic form of g(x) constrained to the tangent space of the con-
stant-energy sphere at x+ or x� and find the directions of
smallest second derivative. In the following, we give the pro-
cedure for x+; x� can be treated analogously:
(i) Apply the Gram–Schmidt orthogonalization algorithm to
the vectors x+, e2, e3,y,eN, where ei is an element of the
canonical basis; i.e., the i-th element of ei is one and the rest
is zero (a simple implementation of this algorithm is included
in the Matlab library, see MATERIALS). As a result, we obtain a
basis b1,y,bN, where b1 ¼ 1

r x+ and b2,y,bN are vectors
orthogonal to it, which therefore form a basis of the space
tangential to the sphere of radius r in x+. By restricting our
computations to that space we locally enforce the constant
energy constraint ||x|| ¼ r. Define B: ¼ (b2,y,bN)

T.
(ii) Compute the directions of the invariances, which are given
by the eigenvectors ~vi of ~H :¼ BTHB, ordered by decreasing
eigenvalues n1 Z?ZnN�1. Project the eigenvectors back to
the input space with

wi ¼ B~vi: ð4:1Þ
The second derivative in the direction of wi corresponds to the
rate of change in the output caused by an infinitesimal move-
ment from x+ in the wi direction. A small second derivative
thus corresponds to a strong invariance. It is given by

ni �
1

r2
ðx+THx++fTx+Þ; ð4:2Þ

which is non-positive, since x+ is a local maximum. The first
term corresponds to the second derivative within the tangent space; the second term is a correction term, equal for all invar-
iances, resulting from the fact that the movement is constrained to the surface of the sphere of constant energy (see ref. 20).
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BOX 2 | PSEUDOCODE OF THE
ALGORITHM THAT COMPUTES AND
VISUALIZES THE INVARIANCES
OF A QUADRATIC FORM AT X+ (STEPS 4
AND 5)

In the following code, A¢ means ‘A transposed’.
Input: H, f, c: quadratic form

x_max: optimal excitatory stimulus x+

dalpha: precision (angular step in degrees on the
sphere for each frame of the animation)

Output: w(1), y, w(N-1): directions of the invariances,
sorted by increasing magnitude of the second
derivative

nu(1), y, nu(N-1): value of the second derivative
in the directions w(1), y, w(N-1)

# determine the radius of the sphere
1- r :¼ norm(x_max)

# find a basis for the tangential plane of the sphere
# in x+; e(1), y, e(N) is the canonical basis
# for R^N

2- b(1), y, b(N) :¼ x_max, e(2), y, e(N)
3- b(1), y, b(N) :¼ orthogonalize(b(1), y, b(N))

# after orthogonalization, b(1) ¼ x_max/r
# restrict the matrix H to the tangential plane

4- B :¼ matrix with b(2), y, b(N) as columns
5- Ht :¼ B¢*H*B

# compute the eigenvalues (in decreasing order)
# and the eigenvectors

6- nu(1), y, nu(N) :¼ eigenvalues(Ht)
7- w(1), y, w(N) :¼ eigenvectors(Ht)

# compute the second derivative in the direction of
# the eigenvectors (eqn. 4.2)

8- nu(i) :¼ nu(i) - 1/r^2 * (x_max¢*H*x_max + f¢*x_max)
# project the eigenvectors back to R^N (eqn. 4.1)

9- w(i) :¼ B*w(i)
# compute the value of the quadratic form at the
maximum

10- out0 :¼ 0.5*x_max¢*H*x_max + f¢*x_max + c
# minimal threshold value (80 percent of the
maximum)

11- minout :¼ 0.8*out0
# visualize the invariances (eqn. 5.1)

12- for i from 1 to N-1:
13- out :¼ out0
14- alpha :¼ 0
15- x :¼ x_max
16- while out 4 minout:
17- visualize x
18- alpha :¼ alpha + dalpha
19- x :¼ cos(alpha)*x_max + sin(alpha)*r*w(i)
20- out :¼ 0.5*x¢*H*x + f¢*x + c
21- repeat once from step 13 with negative dalpha
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In the next step, we describe how to visualize the invariances, and in Steps 6 and 7 we discuss how to check which invar-
iances are significant.

If the quadratic form is homogeneous, the invariances at x+ are given by the eigenvectors v2,y,vN in this order, and
the second derivative on the sphere in the direction of vi is mi � m1. The invariances at x� are given by vN�1,y,v2, with second
derivatives mi � mN.

5| Visualize the significant invariances. To visualize invariance i in an animation, move the stimulus x around the optimal
stimulus x+ (or x�) on the sphere of constant energy in the direction of wi along the path defined as

xðaÞ ¼ cosðaÞ � x+ + sinðaÞ � rwi a 2 ½�90; 90�: ð5:1Þ

We recommend animating x(a) only within the range of a where the response maintains at least 80% of the maximal response
(Fig. 3). Figure 4 shows three frames of such animations for six different invariances. The value of a at the extrema provides an
indication of how robust the unit is to changes in that direction.

6| Collect random quadratic forms. To assess which of the invariances computed in the preceding step are statistically
significant, we compare them to those of random quadratic forms with similar output statistics, which are generated in this
step. Perform Option (A) for theoretical simulations and Option (B) for physiological experiments.
(A) In theoretical simulations
In many theoretical studies, one enforces a fixed mean and variance on the output of the units. Without loss of generality, we
assume here zero mean and unit variance, which can be achieved as follows:

(i) Expand the input data in the space of polynomials of degree two using the mapping

FðxÞ ¼ ðx1x1; x1x2; x1x3; . . . ; xNxN; x1; . . . ; xNÞT : ð6:1Þ

(ii) Compute the mean of the expanded data

�F :¼
X
t

FðxtÞ; ð6:2Þ

and the eigenvalue diagonal matrix L and eigenvector
matrix E of the covariance matrixX

t

ðFðxtÞ � �FÞðFðxtÞ � �FÞT: ð6:3Þ
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x+ x– x+ x– x+ x– x+ x– x+ x–

5

10

15

30

...

1

6

11

26

...

Figure 2 | Optimal excitatory and inhibitory stimuli for some of the units in the simulation. x+ looks similar to a Gabor wavelet in almost all cases, in agreement

with physiological data. x� is usually structured and similar to a Gabor wavelet as well, which suggests that inhibition plays an important role. Units are

numbered consecutively from 1 to 15 in the top four rows and from 26 to 30 in the last row.

α

Figure 3 | Illustration of the method used to visualize the invariances.

Starting from the optimal stimulus (top) we move on the sphere in the

direction of an invariance until the response of the unit drops below 80% of

the maximal output or reaches 901. In the figure two invariances of Unit 4 are

visualized. The one on the left represents a phase-shift invariance and

preserves more than 80% of the maximal output until 901 (the output at 901

is 99.6% of the maximum). The one on the right represents an invariance to

orientation change. The output drops below 80% at 551.
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(iii) Compute the whitening matrix
S ¼ L�1/2ET.

(iv) Generate random vectors qi
0 of

length 1 in the whitened, expanded space and derive the corresponding quadratic forms in the original input space using
the relation

1

2
xT

h11 h12 � � � h1N
h12 h22
..
. . .

. ..
.

h1N h2N � � � hNN

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hi

x +

f1
f2

..

.

fN

0
BBB@

1
CCCA

|fflfflffl{zfflfflffl}
fi

T

x+c ¼

1
2h11
h12
h13
..
.

1
2hNN
f1

..

.

fN

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

|fflfflfflfflffl{zfflfflfflfflffl}
qi

T
x1x1
x1x2
x1x3
..
.

xNxN
x1
..
.

xN

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

|fflfflfflfflffl{zfflfflfflfflffl}
FðxÞ

+c

with qi :¼STqi
0 and c :¼ qT

i
�F. The output of the resulting random quadratic forms has zero mean and unit variance by

construction.
m CRITICAL STEP The random vectors of length 1 must be uniformly distributed on the unit sphere. This can be easily
achieved by repeatedly drawing random numbers from a zero-mean Gaussian distribution, arranging them in a vector and
then normalizing the vector to norm 1. It is important not to use random numbers from a uniform distribution, because
that would introduce a strong bias toward the corners of the unit cube.

(B) In physiological experiments
(i) In physiological experiments, random quadratic forms can be generated by bootstrapping. The spikes can be shuffled6,10 or
the entire spike train can be shifted relative to the stimulus sequence9,12 (this second possibility is to be preferred if the input
stimuli have a temporal structure, i.e., a non-zero autocorrelation) and the same RF estimation procedure used to generate the
units under consideration can be applied to the resulting data. The new randomly generated quadratic forms are compatible
with the distribution of the input data and with the total number of spikes elicited in the neuron under consideration.

7| Compute confidence interval. Estimating a confidence interval for the invariances is difficult because of their interdepe-
ndencies (we have an ordered set of invariances and not independent invariances) and because it is not clear what a good
model of the background distribution is against which significance can be judged. We have, therefore, adopted a rather heuristic
approach, as follows20. Compute the optimal stimuli and second derivatives of the invariances of the random quadratic forms as
in Steps 3 and 4. Keep one randomly chosen second derivative per quadratic form to ensure the measurements are independent.
This allows us to determine a distribution over the random second derivatives and a corresponding 95% confidence interval,
which yields a significance threshold for the second derivatives of the learned units. Figure 5 shows that, in the model simula-
tion, this threshold coincides with the value at which the distribution of the learned second derivatives changes from a rather
Gaussian distribution on the left to a more structured distribution on the right, which we take as an additional hint that the
threshold is reasonable.
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Unit 4, Inv. 1—Phase shifta b

c d

e f

99.5% (–90°) 100% (0°) 99.6% (90°) 84% (–59°) 100% (0°) 84% (59°)

92% (–29°) 100% (0°) 92% (29°) 81% (–37°) 100% (0°) 81% (37°)

98% (–44°) 100% (0°) 88% (44°) 80% (–42°) 100% (0°) 80% (42°)

Unit 6, Inv. 3—Position change

Unit 13, Inv. 4—Size change Unit 14, Inv. 5—Frequency change

Unit 9, Inv. 3—Orientation change Unit 6, Inv. 5—Curvature change

Figure 4 | Example invariances at the optimal
stimuli for some of the units. The central patch of

each plot represents the optimal stimulus for a

unit, and the ones on the sides are produced by

moving it in one (left path) or the other (right

patch) direction of the eigenvector corresponding

to the invariance. To produce this plot, we

stopped before the output dropped below 80% of

the maximum to make the interpretation of the

invariances easier. The relative output of the

function as a percentage and the angle of

displacement a (eqn. 5.1) are given above the

patches. The animations corresponding to these

invariances are available at the authors’

homepages.
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ANTICIPATED RESULTS
In the following, we present the outcome of the analysis procedure described above when applied to the results of the model
simulation reported in ref. 1. In that study, we applied a computational model of V1 based on the temporal slowness principle21

to natural-image-patch sequences, which yielded a set of quadratic forms representing non-linear RFs of visual neurons. The
resulting units had the primary characteristics of complex cells in V1, namely, Gabor-like optimal stimuli and phase-shift
invariance, as well as a number of secondary behaviors, such as end and side inhibition, direction selectivity and non-
orthogonal inhibition. The results of another, more detailed simulation have been reported elsewhere2.

Step 2
The eigenvectors of Units 4 and 28 are shown in Figure 1, ordered by decreasing eigenvalues. In Unit 4, the first two eigenvectors
look similar to Gabor wavelets with a 901 phase difference. As the two eigenvalues have almost the same magnitude, the response
of the quadratic term is similar for the two eigenvectors and also for linear combinations thereof with constant norm 1. For this
reason, this unit responds strongly to edges or gratings but is invariant to changes in the phase or exact position of the stimulus
and thus has the defining characteristics of complex cells in V1. The last two eigenvectors, which correspond to stimuli that
minimize the quadratic term, are Gabor wavelets with an orientation orthogonal to that of the first two. As a consequence, the
output of the quadratic term is inhibited by stimuli with an orientation orthogonal to the preferred one. In the case of Unit 28,
the first and the last two eigenvalues have the same orientation but occupy two different halves of the RF. This means that Unit 28
is end inhibited; i.e., an extension of the length of an optimally oriented sine grating beyond the excitatory half of the RF into
the inhibitory half leads to a decrease in response as opposed to a saturation as in conventional cells.

A direct interpretation of the remaining eigenvectors in the two units is difficult, although the magnitude of the eigenvalues
shows that some of them elicit a strong response. Moreover, the interaction of the linear and quadratic terms to form the overall
output of the quadratic form is not considered but cannot be neglected in general5 (even though it is small for the two units
considered here). We show below that the optimal stimuli and the respective invariances can be more easily visualized and inter-
preted when the linear term is taken into account.

Step 3
Figure 2 shows the optimal excitatory and inhibitory stimuli of some of the units in the simulation. In almost all cases, x+

looks similar to a Gabor wavelet, in agreement with physiological data for neurons in V1 (ref. 22). x� is usually structured as
well, which suggests that inhibition also plays an important role in shaping the response of the unit. As in these two cases the
linear term is negligible20, the optimal stimuli of Units 4 and 28 are almost identical to the eigenvectors of largest magnitude
(compare Fig. 1, first and last eigenvectors, with Fig. 2, Units 4 and 28). However, for quadratic forms with a significant linear
term this does not need to be the case.

Steps 4–7
Figure 4 shows animations corresponding to some representative invariances. The animations show that the behavior of the
units is more complex than suggested by the eigenvectors alone. They have active mechanisms to shape their orientation and
frequency bandwidths and some have a limited invariance to changes in curvature (this characteristic is often associated with
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Figure 5 | Significant invariances. (a) Distribution of 50,000 independently drawn second derivatives of the invariances of random quadratic forms and
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end or side inhibition). Figure 5a shows the distribution of 50,000 independent second derivatives of the invariances of
random quadratic forms and that of the first 50 units learned in the simulation. The latter is clearly skewed toward zero
(i.e., toward more invariant directions) and has a peak near zero. Of all invariances, 28% were classified as significant according
to the 95% confidence interval for the random quadratic forms (dashed line). Figure 5b shows the number of significant
invariances for the individual units (each unit has 49 invariances in total). Of 50 units, 46 have three or more significant
invariances. The first invariance corresponds in all cases to a phase-shift invariance and was always classified as highly
significant (P o 0.0005), which confirms that the units behave in a similar way to complex cells.
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