Abstract
We present a protocol for determining the relative orientation and dynamics of A-form helices in 13C/15N isotopically enriched RNA samples using NMR residual dipolar couplings (RDCs). Non-terminal Watson–Crick base pairs in helical stems are experimentally identified using NOE and trans-hydrogen bond connectivity and modeled using the idealized A-form helix geometry. RDCs measured in the partially aligned RNA are used to compute order tensors describing average alignment of each helix relative to the applied magnetic field. The order tensors are translated into Euler angles defining the average relative orientation of helices and order parameters describing the amplitude and asymmetry of interhelix motions. The protocol does not require complete resonance assignments and therefore can be implemented rapidly to RNAs much larger than those for which complete high-resolution NMR structure determination is feasible. The protocol is particularly valuable for exploring adaptive changes in RNA conformation that occur in response to biologically relevant signals. Following resonance assignments, the procedure is expected to take no more than 2 weeks of acquisition and data analysis time.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Advances in the REDCAT software package
BMC Bioinformatics Open Access 07 October 2013
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Williamson, J.R. Molecular biology—small subunit, big science. Nature 407, 306–307 (2000).
Leulliot, N. & Varani, G. Current topics in RNA–protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).
Al-Hashimi, H.M. Dynamics-based amplification of RNA function and its characterization by using NMR spectroscopy. ChemBioChem 6, 1506–1519 (2005).
Micura, R. & Hobartner, C. On secondary structure rearrangements and equilibria of small RNAs. ChemBioChem 4, 984–990 (2003).
Williamson, J.R. Assembly of the 30S ribosomal subunit. Q. Rev. Biophys. 38, 397–403 (2005).
Schroeder, R., Barta, A. & Semrad, K. Strategies for RNA folding and assembly. Nat. Rev. Mol. Cell Biol. 5, 908–919 (2004).
Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).
Grundy, F.J. & Henkin, T.M. Regulation of gene expression by effectors that bind to RNA. Curr. Opin. Microbiol. 7, 126–131 (2004).
Hermann, T. Rational ligand design for RNA: the role of static structure and conformational flexibility in target recognition. Biochimie 84, 869–875 (2002).
Tor, Y. Targeting RNA with small molecules. ChemBioChem 4, 998–1007 (2003).
Vicens, Q. & Westhof, E. RNA as a drug target: the case of aminoglycosides. ChemBioChem 4, 1018–1023 (2003).
D'Souza, V., Dey, A., Habib, D. & Summers, M.F. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J. Mol. Biol. 337, 427–442 (2004).
Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).
MacDonald, D. & Lu, P. Residual dipolar couplings in nucleic acid structure determination. Curr. Opin. Struct. Biol. 12, 337–343 (2002).
Mollova, E.T., Hansen, M.R. & Pardi, A. Global structure of RNA determined with residual dipolar couplings. J. Am. Chem. Soc. 122, 11561–11562 (2000).
Tjandra, N. & Bax, A. Measurement of dipolar contributions to (1)J(CH) splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J. Magn. Reson. 124, 512–515 (1997).
Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).
Williamson, J.R. Induced fit in RNA–protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).
Lilley, D.M.J. The Varkud satellite ribozyme. RNA 10, 151–158 (2004).
Dickerson, R.E., Goodsell, D.S., Kopka, M.L. & Pjura, P.E. The effect of crystal packing on oligonucleotide double helix structure. J. Biomol. Struct. Dyn. 5, 557–579 (1987).
Getz, M.M., Andrews, A.J., Fierke, C.A. & Al-Hashimi, H.M. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13(2), 251–266 (2006).
Sun, X., Zhang, Q. & Al-Hashimi, H.M. Resolving fast and slow internal motions in the bulge containing stem–loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res. 35(5), 1698–1713 (2007).
Musselman, C. et al. Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. J. Biomol. NMR 36, 235–249 (2006).
Al-Hashimi, H.M. et al. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings. J. Mol. Biol. 315, 95–102 (2002).
Zacharias, M. & Hagerman, P.J. Bulge-induced bends in RNA—quantification by transient electric birefringence. J. Mol. Biol. 247, 486–500 (1995).
Zacharias, M. & Hagerman, P.J. The influence of symmetric internal loops on the flexibility of RNA. J. Mol. Biol. 257, 276–289 (1996).
Varani, G., Aboulela, F. & Allain, F.H.T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).
Wijmenga, S.S. & van Buuren, B.N.M. The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spectrosc. 32, 287–387 (1998).
Furtig, B., Richter, C., Wohnert, J. & Schwalbe, H. NMR spectroscopy of RNA. ChemBioChem 4, 936–962 (2003).
Al-Hashimi, H.M. & Patel, D.J. Residual dipolar couplings: synergy between NMR and structural genomics. J. Biomol. NMR 22, 1–8 (2002).
Al-Hashimi, H.M., Gorin, A., Majumdar, A., Gosser, Y. & Patel, D.J. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. J. Mol. Biol. 318, 637–649 (2002).
Olson, W.K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).
Neidle, S. Oxford Handbook of Nucleic Acid Structure (Oxford University Press, New York, 1999).
McCallum, S.A. & Pardi, A. Refined solution structure of the iron-responsive element RNA using residual dipolar couplings. J. Mol. Biol. 326, 1037–1050 (2003).
Bondensgaard, K., Mollova, E.T. & Pardi, A. The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 41, 11532–11542 (2002).
Sibille, N., Pardi, A., Simorre, J.P. & Blackledge, M. Refinement of local and long-range structural order in theophylline-binding RNA using C-13–H-1 residual dipolar couplings and restrained molecular dynamics. J. Am. Chem. Soc. 123, 12135–12146 (2001).
Leeper, T.C., Athanassiou, Z., Dias, R.L.A., Robinson, J.A. & Varani, G. TAR RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 44, 12362–12372 (2005).
Richards, R.J. et al. Structural study of elements of Tetrahymena telomerase RNA stem–loop IV domain important for function. RNA 12, 1475–1485 (2006).
Bothner-By, A.A. in Encyclopedia of Nuclear Magnetic Resonance (eds. Grant, D.M. & Harris, R.K.) 2932–2938 (Wiley, Chichester, 1995).
Prestegard, J.H., Al-Hashimi, H.M. & Tolman, J.R. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000).
Tolman, J.R. & Ruan, K. NMR residual dipolar couplings as probes of biomolecular dynamics. Chem. Rev. 106, 1720–1736 (2006).
Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).
Dingley, A.J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J. Am. Chem. Soc. 120, 8293–8297 (1998).
Pervushin, K. et al. NMR scaler couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation optimized spectroscopy. Proc. Natl. Acad. Sci. USA 95, 14147–14151 (1998).
Saupe, A. Recent results in field of liquid crystals. Angew. Chem. Int. Edn. 7, 97–112 (1968).
Losonczi, J.A., Andrec, M., Fischer, M.W.F. & Prestegard, J.H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).
Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. & Prestegard, J.H. Structural and dynamic analysis of residual dipolar coupling data for proteins. J. Am. Chem. Soc. 123, 1416–1424 (2001).
Zweckstetter, M. & Bax, A. Evaluation of uncertainty in alignment tensors obtained from dipolar couplings. J. Biomol. NMR 23, 127–137 (2002).
Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J. Am. Chem. Soc. 120, 6394–6400 (1998).
Ying, J.F., Grishaev, A., Bryce, D.L. & Bax, A. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. J. Am. Chem. Soc. 128, 11443–11454 (2006).
Hansen, A.L. & Al-Hashimi, H.M. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. J. Magn. Reson. 179, 299–307 (2006).
Grishaev, A., Ying, J.F. & Bax, A. Pseudo-CSA restraints for NMR refinement of nucleic acid structure. J. Am. Chem. Soc. 128, 10010–10011 (2006).
Briggman, K.B. & Tolman, J.R. De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy. J. Am. Chem. Soc. 125, 10164–10165 (2003).
Zhang, Q., Throolin, R., Pitt, S.W., Serganov, A. & Al-Hashimi, H.M. Probing motions between equivalent RNA domains using magnetic field induced residual dipolar couplings: accounting for correlations between motions and alignment. J. Am. Chem. Soc. 125, 10530–10531 (2003).
Chen, Y. et al. Structure of stem–loop IV of Tetrahymena telomerase RNA. EMBO J. 25, 3156–3166 (2006).
Zhang, Q., Sun, X.Y., Watt, E.D. & Al-Hashimi, H.M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006).
Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).
Kontaxis, G., Clore, G.M. & Bax, A. Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J. Magn. Reson. 143, 184–196 (2000).
Redfield, A.G. The theory of relaxation processes. Adv. Mag. Reson. 1, 1–32 (1965).
de Alba, E. & Tjandra, N. On the accurate measurement of amide one-bond N-15–H-1 couplings in proteins: effects of cross-correlated relaxation, selective pulses and dynamic frequency shifts. J. Magn. Reson. 183, 160–165 (2006).
Boisbouvier, J., Bryce, D.L., O'Neil-Cabello, E., Nikonowicz, E.P. & Bax, A. Resolution-optimized NMR measurement of D-1(CH), D-1(CH) and D-2(CH) residual dipolar couplings in nucleic acid bases. J. Biomol. NMR 30, 287–301 (2004).
Prestegard, J.H. & Kishore, A.I. Partial alignment of biomolecules: an aid to NMR characterization. Curr. Opin. Chem. Biol. 5, 584–590 (2001).
Clore, G.M., Starich, M.R. & Gronenborn, A.M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572 (1998).
Hansen, M.R., Hanson, P. & Pardi, A. Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol. 317, 220–240 (2000).
Ottiger, M., Tjandra, N. & Bax, A. Magnetic field dependent amide N-15 chemical shifts in a protein-DNA complex resulting from magnetic ordering in solution. J. Am. Chem. Soc. 119, 9825–9830 (1997).
Kung, H.C., Wang, K.Y., Goljer, I. & Bolton, P.H. Magnetic alignment of duplex and quadruplex DNAs. J. Mag. Reson. Series B 109, 323–325 (1995).
Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar H-1–N-15 and H-1–C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997).
Al-Hashimi, H.M. et al. Field- and phage-induced dipolar couplings in a homodimeric DNA quadruplex, relative orientation of G center dot(C-A) triad and G-tetrad motifs and direct determination of C2 symmetry axis orientation. J. Am. Chem. Soc. 123, 633–640 (2001).
Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000).
Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. & Sklenar, H. Conformational and helicoidal analysis of 30 Ps of molecular-dynamics on the D(Cgcgaattcgcg) double helix—curves, dials and windows. J. Biomol. Struct. Dyn. 6, 669–699 (1989).
Dickerson, R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998).
Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).
Lu, X.J., El Hassan, M.A. & Hunter, C.A. Structure and conformation of helical nucleic acids: analysis program (SCHNAaP). J. Mol. Biol. 273, 668–680 (1997).
Bansal, M., Bhattacharyya, D. & Ravi, B. NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput. Appl. Biosci. 11, 281–287 (1995).
Valafar, H. & Prestegard, J.H. REDCAT: a residual dipolar coupling analysis tool. J. Magn. Reson. 167, 228–241 (2004).
Wei, Y.F. & Werner, M.H. iDC: a comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination. J. Biomol. NMR 35, 17–25 (2006).
Skrynnikov, N.R. et al. Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295, 1265–1273 (2000).
Al-Hashimi, H.M. et al. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J. Magn. Reson. 143, 402–406 (2000).
Tang, R.S. & Draper, D.E. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry 29, 5232–5237 (1990).
Bhattacharyya, A., Murchie, A.I.H. & Lilley, D.M.J. RNA bulges and the helical periodicity of double-stranded-RNA. Nature 343, 484–487 (1990).
Bhattacharyya, A. & Lilley, D.M.J. Single base mismatches in DNA—long-range and short-range structure probed by analysis of axis trajectory and local chemical-reactivity. J. Mol. Biol. 209, 583–597 (1989).
Riordan, F.A., Bhattacharyya, A., McAteer, S. & Lilley, D.M.J. Kinking of RNA helices by bulged bases, and the structure of the human-immunodeficiency-virus transactivator response element. J. Mol. Biol. 226, 305–310 (1992).
Tang, R.S. & Draper, D.E. On the use of phasing experiments to measure helical repeat and bulge loop-associated twist in RNA. Nucleic Acids Res. 22, 835–841 (1994).
Tang, R.S. & Draper, D.E. Bend and helical twist associated with a symmetrical internal loop from 5S ribosomal-RNA. Biochemistry 33, 10089–10093 (1994).
Kim, H.D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl. Acad. Sci. USA 99, 4284–4289 (2002).
Rueda, D. et al. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42, 9924–9936 (2003).
Al-Hashimi, H.M., Pitt, S.W., Majumdar, A., Xu, W.J. & Patel, D.J. Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings. J. Mol. Biol. 329, 867–873 (2003).
Woodson, S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109 (2005).
Ippolito, J.A. & Steitz, T.A. A 1.3-angstrom resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc. Natl. Acad. Sci. USA 95, 9819–9824 (1998).
Du, Z., Lind, K.E. & James, T.L. Structure of TAR RNA complexed with a Tat-TAR interaction nanomolar inhibitor that was identified by computational screening. Chem. Biol. 9, 707–712 (2002).
Faber, C., Sticht, H., Schweimer, K. & Rosch, P. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J. Biol. Chem. 275, 20660–20666 (2000).
Aboul-ela, F., Karn, J. & Varani, G. The structure of the human-immunodeficiency-virus type-1 Tar RNA reveals principles of RNA recognition by Tat protein. J. Mol. Biol. 253, 313–332 (1995).
Aboul-ela, F., Karn, J. & Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 24, 3974–3981 (1996).
Puglisi, J.D., Tan, R.Y., Calnan, B.J., Frankel, A.D. & Williamson, J.R. Conformation of the Tar RNA-arginine complex by Nmr-spectroscopy. Science 257, 76–80 (1992).
Murchie, A.I. et al. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J. Mol. Biol. 336, 625–638 (2004).
Pitt, S.W., Majumdar, A., Serganov, A., Patel, D.J. & Al-Hashimi, H.M. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization. J. Mol. Biol. 338, 7–16 (2004).
Pitt, S.W., Zhang, Q., Patel, D.J. & Al-Hashimi, H.M. Evidence that electrostatic interactions dictate the ligand-induced arrest of RNA global flexibility. Angew. Chem. Int. Edn. 44, 3412–3415 (2005).
Casiano-Negroni, A., Sun, X. & Al-Hashimi, H.M. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: New insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry (in the press).
Saupe, A. & Englert, G. High-resolution nuclear magnetic resonance spectra of orientated molecules. Phys. Rev. Lett. 11, 462–464 (1963).
Cornell, W.D. et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).
Clowney, L. et al. Geometric parameters in nucleic acids: nitrogenous bases. J. Am. Chem. Soc. 118, 509–518 (1996).
Getz, M.M., Sun, X., Casiano-Negroni, A., Zhang, Q. & Al-Hashimi, H.M. NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers (in the press).
Davis, B. et al. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic “hot spots”. J. Mol. Biol. 336, 343–356 (2004).
Miclet, E., O'Neil-Cabello, E., Nikonowicz, E.P., Live, D. & Bax, A. H-1–H-1 dipolar couplings provide a unique probe of RNA backbone structure. J. Am. Chem. Soc. 125, 15740–15741 (2003).
Miclet, E., Boisbouvier, J. & Bax, A. Measurement of eight scalar and dipolar couplings for methine-methylene pairs in proteins and nucleic acids. J. Biomol. NMR 31, 201–216 (2005).
O'Neil-Cabello, E., Bryce, D.L., Nikonowicz, E.P. & Bax, A. Measurement of five dipolar couplings from a single 3D NMR multiplet applied to the study of RNA dynamics. J. Am. Chem. Soc. 126, 66–67 (2004).
Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998).
Vallurupalli, P. & Moore, P.B. Measurement of H2′-C2′and H3′-C3′ dipolar couplings in RNA molecules. J. Biomol. NMR 24, 63–66 (2002).
Yan, J.L., Corpora, T., Pradhan, P. & Bushweller, J.H. MQ-HCN-based pulse sequences for the measurement of (13)C1′-(1)H1′, (13)C1′-N-15, (1)H1′-N-15, (13)C1′-(13)C2′, (1)H1′-(13)C2′, (13)C6/8–(1)H6/8, (13)C6/8–N-15, (1)H6/8–N-15, (13)C6–(13)C5, (1)H6–(13)C5 dipolar couplings in C-13, N-15-labeled DNA (and RNA). J. Biomol. NMR 22, 9–20 (2002).
Zidek, L., Wu, H.H., Feigon, J. & Sklenar, V. Measurement of small scalar and dipolar couplings in purine and pyrimidine bases. J. Biomol. NMR 21, 153–160 (2001).
Brutscher, B., Boisbouvier, J., Pardi, A., Marion, D. & Simorre, J.P. Improved sensitivity and resolution in H-1–C-13 NMR experiments of RNA. J. Am. Chem. Soc. 120, 11845–11851 (1998).
Jaroniec, C.P., Boisbouvier, J., Tworowska, I., Nikonowicz, E.P. & Bax, A. Accurate measurement of 15N–13C residual dipolar couplings in nucleic acids. J Biomol NMR 31, 231–241 (2005).
Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).
Ottiger, M. & Bax, A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J. Biomol. NMR 12, 361–372 (1998).
Sass, J. et al. Purple membrane induced alignment of biological macromolecules in the magnetic field. J. Am. Chem. Soc. 121, 2047–2055 (1999).
Koenig, B.W. et al. NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J. Am. Chem. Soc. 121, 1385–1386 (1999).
Tycko, R., Blanco, F.J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341 (2000).
Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T. & Grzesiek, S. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000).
Ruckert, M. & Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).
Alvarez-Salgado, F., Desvaux, H. & Boulard, Y. NMR assessment of the global shape of a non-labelled DNA dodecamer containing a tandem of G-T mismatches. Magn. Reson. Chem. 44, 1081–1089 (2006).
Acknowledgements
We thank members of the Al-Hashimi laboratory for insightful comments and Dr. Alex Kurochkin for his expertise and for maintenance of the NMR instruments. H.M.A. acknowledges fruitful collaborations with the groups of Carol Fierke (The University of Michigan) and Ioan Andricioaei (The University of Michigan). We gratefully acknowledge the Michigan Economic Development Cooperation and the Michigan Technology Tri-Corridor for the support in the purchase 600 MHz spectrometer. This work was supported by funding from the NIH (RO1 AI066975-01).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Bailor, M., Musselman, C., Hansen, A. et al. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2, 1536–1546 (2007). https://doi.org/10.1038/nprot.2007.221
Published:
Issue Date:
DOI: https://doi.org/10.1038/nprot.2007.221
This article is cited by
-
Maximizing accuracy of RNA structure in refinement against residual dipolar couplings
Journal of Biomolecular NMR (2019)
-
Advances in the REDCAT software package
BMC Bioinformatics (2013)
-
Nucleic acid helix structure determination from NMR proton chemical shifts
Journal of Biomolecular NMR (2013)
-
3D maps of RNA interhelical junctions
Nature Protocols (2011)
-
The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments
Nature Protocols (2008)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.