Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice


This protocol describes a methodology for imaging the sequestration of infected erythrocytes of the rodent malaria parasite Plasmodium berghei in the bodies of live mice or in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of infected erythrocytes is performed by measuring bioluminescence produced by the enzymatic reaction between luciferase and its substrate luciferin, which is injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by an intensified charge-coupled device (I-CCD) photon-counting video camera. Sequestration of infected erythrocytes is imaged during short-term infections with synchronous parasite development or during ongoing infections. With this technology, sequestration patterns of the schizont stage can be quantitatively analyzed within 1–2 d after infection. Real-time in vivo imaging of infected erythrocytes will provide increased insights into the dynamics of sequestration and its role in pathology, and can be used to evaluate strategies that prevent sequestration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: In vivo imaging system, IVIS100 from Xenogen, used for imaging luciferase-expressing sequestered schizonts in whole bodies of live mice or in isolated non-fixed organs.
Figure 2: Imaging of luciferase-expressing schizonts in a live mouse (a) Photographic image of a mouse obtained with the IVIS100 system.
Figure 3: Comparative analysis of bioluminescence intensities of two different mice.
Figure 4: In vivo imaging of sequestered schizonts in whole bodies of live mice with synchronized infections of the luciferase-expressing parasite line 354cl4.
Figure 5: Comparative analysis of bioluminescence signal intensities of isolated organs using the ROI option.


  1. Amino, R., Menard, R. & Frischknecht, F. In vivo imaging of malaria parasites — recent advances and future directions. Curr. Opin. Microbiol. 8, 407–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Heussler, V. & Doerig, C. In vivo imaging enters parasitology. Trends Parasitol. 22, 192–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Franke-Fayard, B. et al. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc. Natl. Acad. Sci. USA 102, 11468–11473 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ho, M. & White, N.J. Molecular mechanisms of cytoadherence in malaria. Am. J. Physiol. 276, C1231–C1242 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Sherman, I.W., Eda, S. & Winograd, E. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect. 5, 897–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Mackintosh, C.L., Beeson, J.G. & Marsh, K. Clinical features and pathogenesis of severe malaria. Trends Parasitol. 20, 597–603 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hunt, N.H. & Grau, G.E. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 24, 491–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Janse, C.J. & Waters, A.P. Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol. Today 11, 138–143 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Janse, C., Ramesar, J. & Waters, A.P. High efficiency transfection and drug-selection of genetically transformed blood stages of the rodent malaria parasite, P. berghei. Nat. Protocols (2006) (doi:10.1038/nprot.2006.53).

    Google Scholar 

  10. Kirchgatter, K. & Del Portillo, H.A. Clinical and molecular aspects of severe malaria. An. Acad. Bras. Cienc. 77, 455–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cowman, A.F. & Crabb, B.S. Invasion of red blood cells by malaria parasites. Cell 124, 755–766 (2006).

    Article  CAS  Google Scholar 

  12. Gilks, C.F., Jarra, W., Harvey-Wood, K., McLean, S.A. & Schetters, T. Host diet in experimental rodent malaria: a variable which can compromise experimental design and interpretation. Parasitology 98, 175–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Ho, M., Hickey, M.J., Murray, A.G., Andonegui, G. & Kubes, P. Visualization of Plasmodium falciparum–endothelium interactions in human microvasculature: mimicry of leukocyte recruitment. J. Exp. Med. 192, 1205–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadikot, R.T. & Blackwell, T.S. Bioluminescence imaging. Proc. Am. Thorac. Soc. 2, 537–532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welsh, D.K. & Kay, S.A. Bioluminescence imaging in living organisms. Curr. Opin. Biotechnol. 16, 73–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Ntziachristos, V., Ripoll, J., Wang, L.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Dufresne, A.T. & Gromeier, M. A nonpolio enterovirus with respiratory tropism causes poliomyelitis in intercellular adhesion molecule 1 transgenic mice. Proc. Natl. Acad. Sci. USA 101, 13636–13641 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  19. Dunn, K.W. & Young, P.A. Principles of multiphoton microscopy. Nephron Exp. Nephrol. 103, e33–e40 (2006).

    Article  PubMed  Google Scholar 

  20. de Souza, J.B. & Riley, E.M. Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect. 4, 291–300 (2002).

    Article  PubMed  Google Scholar 

Download references


We would like to thank H. Kroeze, J. Ramesar and S. Khan for their critical comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chris J Janse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Franke-Fayard, B., Waters, A. & Janse, C. Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1, 476–485 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing