Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BAC 'landing' on chromosomes of Brachypodium distachyon for comparative genome alignment


Fluorescence in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) with large genomic DNA inserts as probes (BAC 'landing') is a powerful means by which eukaryotic genomes can be physically mapped and compared. Here we report a BAC landing protocol that has been developed specifically for the weedy grass species Brachypodium distachyon, which has been adopted recently by the scientific community as an alternative model for the temperate cereals and grasses. The protocol describes the preparation of somatic and meiotic chromosome substrates for FISH, the labeling of BACs, a chromosome mapping strategy, empirical conditions for optimal in situ hybridization and stringency washing, the detection of probes and the capturing and processing of images. The expected outcome of the protocol is the specific assignment of BACs containing single-copy inserts to one of the five linkage groups of the genome of this species. Once somatic or meiotic material is available, the entire protocol can be completed in about 3 d. The protocol has been customized empirically for B. distachyon and its near relatives, but it can be adapted with minor modifications to diverse plant species.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Karyotype of B. distachyon.
Figure 2: Examples of optimal and suboptimal squash preparations.
Figure 3: The landing of BACs and rDNA onto the ten chromosome arms of B. distachyon.


  1. Schwarzacher, T. & Heslop-Harrison, P. Practical In Situ Hybridization (BIOS Scientific Publishers, Oxford, 2000).

    Google Scholar 

  2. Maluszynska, J. In situ hybridisation in plants - methods and application. in Molecular Techniques in Crop Improvement (ed. Jain, S.M., Ahloowalia, B.S. & Brar, D.S.) 299–326 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002).

    Chapter  Google Scholar 

  3. Walling, J.G., Pires, J.C. & Jackson, S.A. Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods. Methods Enzymol. 395, 443–460 (2005).

    Article  CAS  Google Scholar 

  4. Jiang, J. & Gill, B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49, 1057–1068 (2006).

    Article  CAS  Google Scholar 

  5. Peterson, D.G., Tomkins, J.P., Frisch, D.A., Wing, R.A. & Paterson, A.H. Construction of Plant Bacterial Artificial Chromosome (BAC) Libraries: an Illustrated Guide 2nd edn. ( 2002).

    Google Scholar 

  6. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  7. Woo, S.-S., Jiang, J., Gill, B.S., Paterson, A. & Wing, R.A. Construction and chracterization of a bacterial artificial chromosome library of Sorghum bicolor . Nucleic Acids Res. 22, 4922–4931 (1994).

    Article  CAS  Google Scholar 

  8. Yu, Y. et al. A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101, 1093–1099 (2000).

    Article  CAS  Google Scholar 

  9. Lapitan, N.L.V., Brown, S.E., Kennard, W., Stephens, J.L. & Knudson, D.L. FISH physical mapping with barley BAC clones. Plant J. 11, 149–156 (1997).

    Article  CAS  Google Scholar 

  10. Islam-Faridi, M.N. et al. A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161, 345–353 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, J.-S. et al. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45, 402–412 (2002).

    Article  CAS  Google Scholar 

  12. Jiang, J., Gill, B.S., Wang, G., Ronald, P.C. & Ward, D.C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci. USA 92, 4487–4491 (1995).

    Article  CAS  Google Scholar 

  13. Zhang, P., Li, W., Fellers, J., Friebe, B. & Gill, B.S. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112, 288–299 (2004).

    Article  CAS  Google Scholar 

  14. Zhang, P., Li, W., Friebe, B. & Gill, B.S. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47, 979–987 (2004).

    Article  CAS  Google Scholar 

  15. Cheng, Z., Presting, G.G., Buell, C.R., Wing, R.A. & Jiang, J. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157, 1749–1757 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Howell, E.C. et al. Physical organization of the major duplication on Brassica oleracea chromosome 06 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome 48, 1093–1103 (2005).

    Article  CAS  Google Scholar 

  17. Lysak, M.A. et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103, 5224–5229 (2006).

    Article  CAS  Google Scholar 

  18. Ziolkowski, P.A., Kaczmarek, M., Babula, D. & Sadowski, J. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J. 47, 63–74 (2006).

    Article  CAS  Google Scholar 

  19. Lysak, M.A., Fransz, P.F., Ali, H.B.M. & Schubert, I. Chromosome painting in Arabidopsis thaliana . Plant J. 28, 689–697 (2001).

    Article  CAS  Google Scholar 

  20. Lysak, M.A., Pecinka, A. & Schubert, I. Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res. 11, 195–204 (2003).

    Article  CAS  Google Scholar 

  21. Hasterok, R. et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using BAC landing with fluorescent in situ hybridization. Genetics 173, 349–362 (2006).

    Article  CAS  Google Scholar 

  22. Draper, J. et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127, 1539–1555 (2001).

    Article  CAS  Google Scholar 

  23. Shi, Y., Draper, J. & Stace, C.A. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Syst. Evol. 188, 125–138 (1993).

    Article  CAS  Google Scholar 

  24. Catalan, P., Shi, Y., Armstrong, L., Draper, J. & Stace, C.A. Molecular phylogeny of the grass genus Brachypodium P-Beauv based on RFLP and RAPD analysis. Bot. J. Linn. Soc. 117, 263–280 (1995).

    Google Scholar 

  25. Hsiao, C., Chatterton, N.J., Asay, K.H. & Jensen, K.B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38, 211–223 (1995).

    Article  CAS  Google Scholar 

  26. Catalan, P., Kellogg, E.A. & Olmstead, R.G. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol. Phylogenet. Evol. 8, 150–166 (1997).

    Article  CAS  Google Scholar 

  27. Vogel, J.P. et al. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon . Theor. Appl. Genet. 113, 186–195 (2006).

    Article  CAS  Google Scholar 

  28. Olsen, P. et al. Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant Sci. 170, 1020–1025 (2006).

    Article  CAS  Google Scholar 

  29. Bennett, M.D. & Leitch, I.J. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. (Lond.) 95, 45–90 (2005).

    Article  CAS  Google Scholar 

  30. Hasterok, R., Draper, J. & Jenkins, G. Laying the cytotaxonomic foundation of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 12, 397–403 (2004).

    Article  CAS  Google Scholar 

Download references


This work was partially supported by Polish Ministry of Science and Higher Education (grant 2 PO4C 012 30).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Glyn Jenkins or Robert Hasterok.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Preparation of root meristem squashes. The narrated movie shows the cytological procedure for handling and dissecting root tip meristems, their squashing onto slides, and the removal of cover slips (protocol steps 1A viii and 2 to 4). The movie lasts 2.4 min. (MOV 49888 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jenkins, G., Hasterok, R. BAC 'landing' on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2, 88–98 (2007).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing