Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site–specific stable isotope tagging

Abstract

Protein post-translational modifications (PTMs), such as glycosylation and phosphorylation, are crucial for various signaling and regulatory events, and are therefore an important objective of proteomics research. We describe here a protocol for isotope-coded glycosylation site–specific tagging (IGOT), a method for the large-scale identification of N-linked glycoproteins from complex biological samples. The steps of this approach are: (1) lectin column–mediated affinity capture of glycopeptides generated by protease digestion of protein mixtures; (2) purification of the enriched glycopeptides by hydrophilic interaction chromatography (HIC); (3) peptide-N-glycanase-mediated incorporation of a stable isotope tag, 18O18O, specifically at the N-glycosylation site; and (4) identification of 18O-tagged peptides by liquid chromatography–coupled mass spectrometry (LC/MS)-based proteomics technology. The application of this protocol to the characterization of N-linked glycoproteins from crude extracts of the nematode Caenorhabditis elegans or mouse liver provides a list of hundreds to a thousand glycoproteins and their sites of glycosylation within a week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for large-scale identification of N-linked glycoproteins by IGOT-LC-MS/MS.
Figure 2: N-linked glycans and their binding lectins.
Figure 3: PNGase-mediated isotope-coded glycosylation site–specific stable isotope tagging (IGOT) in H218O.
Figure 4: Mass spectra of N-linked glycopeptides after IGOT.

Similar content being viewed by others

References

  1. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    Article  CAS  Google Scholar 

  2. Krishna, R.G. & Wold, F. Post-translational modification of proteins. Adv. Enzymol. Relat. Areas Mol. Biol. 67, 265–298 (1993).

    CAS  PubMed  Google Scholar 

  3. Freeze, H.H. & Aebi, M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15, 490–498 (2005).

    Article  CAS  Google Scholar 

  4. Sturiale, L. et al. Hypoglycosylation with increased fucosylation and branching of serum transferrin N-glycans in untreated galactosemia. Glycobiology 15, 1268–1276 (2005).

    Article  CAS  Google Scholar 

  5. Varki, A. et al. in Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999).

    Google Scholar 

  6. Petrescu, A.-J. et al. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004).

    Article  CAS  Google Scholar 

  7. Jones, J., Krag, S.S. & Betenbaugh, M.J. Controlling N-linked glycan site occupancy. Biochim. Biophys. Acta 1726, 121–137 (2005).

    Article  CAS  Google Scholar 

  8. Moloney, D.J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  Google Scholar 

  9. Block, T.M. et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc. Natl. Acad. Sci. USA 102, 779–784 (2005).

    Article  CAS  Google Scholar 

  10. Hirabayashi, J. et al. Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J. Biochem. 132, 103–114 (2002).

    Article  CAS  Google Scholar 

  11. Gonzalez, J. et al. A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant alpha-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal. Biochem. 205, 151–158 (1992).

    Article  CAS  Google Scholar 

  12. Zhang, H., Li, X.J., Martin, D.B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    Article  CAS  Google Scholar 

  13. Kaji, H. et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667–672 (2003).

    Article  CAS  Google Scholar 

  14. Kameyama, A. et al. Strategy for simulation of CID spectra of N-linked oligosaccharides toward glycomics. J. Proteome Res. 5, 808–814 (2006).

    Article  CAS  Google Scholar 

  15. Wada, Y., Tajiri, M. & Yoshida, S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004).

    Article  CAS  Google Scholar 

  16. Cieniewski-Bernard, C. et al. Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol. Cell. Proteomics 3, 577–585 (2004).

    Article  CAS  Google Scholar 

  17. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934 (2006).

    Article  CAS  Google Scholar 

  18. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  Google Scholar 

  19. Sprung, R. et al. Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J. Proteome Res. 4, 950–957 (2005).

    Article  CAS  Google Scholar 

  20. Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  Google Scholar 

  21. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  CAS  Google Scholar 

  22. Oda, Y. et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  23. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  24. Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protocols 1, 139–145 (2006).

    Article  CAS  Google Scholar 

  25. Natsume, T. et al. A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. Anal. Chem. 74, 4725–4733 (2002).

    Article  CAS  Google Scholar 

  26. Isobe, T. et al. Automated two-dimensional liquid chromatography/tandem mass spectrometry for large-scale protein analysis. in Proteins and Proteomics 869–876 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 2003).

    Google Scholar 

  27. Mawuenyega, K. et al. Large-scale identification of Caenorhabditis elegans proteins by multi-dimensional liquid chromatography-tandem mass spectrometry. J. Proteome Res. 2, 23–35 (2003).

    Article  CAS  Google Scholar 

  28. Takahashi, N. et al. Proteomic snapshot analyses of preribosomal ribonucleoprotein complexes formed at various stages of ribosome biogenesis in yeast and mammalian cells. Mass Spectrom. Rev. 22, 287–317 (2003).

    Article  CAS  Google Scholar 

  29. Taoka, M. et al. Only a small subset of horizontally transferred chromosomal genes in Escherichia coli are expressed into proteins. Mol. Cell. Proteomics 3, 780–787 (2004).

    Article  CAS  Google Scholar 

  30. Nagano, K. et al. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics 5, 1346–1361 (2005).

    Article  CAS  Google Scholar 

  31. Nunomura, K. et al. Cell surface labeling and mass spectrometry reveal diversity of cell-surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics 4, 1968–1976 (2005).

    Article  CAS  Google Scholar 

  32. Shinkawa, T. et al. STEM: a software tool for large-scale proteomic data analyses. J. Proteome Res. 4, 1826–1831 (2005).

    Article  CAS  Google Scholar 

  33. Ishida, Y., Fujita, T. & Asai, K. New detection and separation method for amino acids by high-performance liquid chromatography. J. Chromatogr. 204, 143–148 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants for the Structural Glycomics Project from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, and for the Integrated Proteomics Project, Pioneer Research on Genome the Frontier from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and by a grant-in-aid for Scientific Research from MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Isobe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaji, H., Yamauchi, Y., Takahashi, N. et al. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site–specific stable isotope tagging. Nat Protoc 1, 3019–3027 (2006). https://doi.org/10.1038/nprot.2006.444

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.444

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing