Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic–endothelial sinusoid-like structures

Abstract

Here, we describe a simple protocol for the design and construction of a laser-guided direct writing (LGDW) system able to micropattern the self-assembly of liver sinusoid-like structures with micrometer resolution in vitro. To the best of our knowledge, LGDW is the only technique able to pattern cells “on the fly” with micrometer precision on arbitrary matrices, including soft gels such as Matrigel. By micropatterning endothelial cells on Matrigel, one can control the self-assembly of vascular structures and associated liver tissue. LGDW is therefore uniquely suited for studying the role of tissue architecture and mechanical properties at the single-cell resolution, and for studying the effects of heterotypic cell–cell interactions underlying processes such as liver morphogenesis, differentiation and angiogenesis. The total time required to carry out this protocol is typically 7 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LGDW system.
Figure 2: Developing umbilical vein endothelial cell pattern imaged via brightfield microscopy.
Figure 3: Final pattern of umbilical vein endothelial cells written on a collagen-coated surface by LGDW, 24 h after guidance.
Figure 4: LGDW of vascular structures on Matrigel.
Figure 5: LGDW of liver sinusoid-like structures.
Figure 6: Hepatic–endothelial organoid formation.

Similar content being viewed by others

References

  1. Zakim, D. & Boyer, T. Hepatology: A Textbook of Liver Disease 3rd edn., Vol. 1 (WB Saunders Company, Philadelphia, PA, 1996).

    Google Scholar 

  2. Desmet, V.J. in The Liver, Biology and Pathobiology 4th edn. (ed. Arias, I.M.) 3–15 (Lippincott Williams & Wilkins, Philadelphia, PA, 2001).

    Google Scholar 

  3. Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5, 836–847 (2004).

    Article  CAS  Google Scholar 

  4. Nedredal, G.I. et al. Liver sinusoidal endothelial cells represents an important blood clearance system in pigs. Comp. Hepatol. 2, 1 (2003).

    Article  Google Scholar 

  5. Willekens, F.L.A. et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 105, 2141–2145 (2005).

    Article  CAS  Google Scholar 

  6. Behnia, K. et al. Xenobiotic metabolism by cultured primary porcine hepatocytes. Tissue Eng. 6, 467–479 (2000).

    Article  CAS  Google Scholar 

  7. Grattagliano, I., Portincasa, P., Palmieri, V.O. & Palasciano, G. Overview on the mechanisms of drug-induced liver cell death. Ann. Hepatol. 1, 162–168 (2002).

    PubMed  Google Scholar 

  8. Dahn, M.S., Lange, M.P. & Berberoglu, E.D. Functional characteristics of the hypermetabolic isolated perfused liver. Shock 6, 52–56 (1996).

    Article  CAS  Google Scholar 

  9. Lee, K., Berthiaume, F., Stephanopoulos, G.N. & Yarmush, M.L. Profiling of dynamic changes in hypermetabolic livers. Biotechnol. Bioeng. 83, 400–415 (2003).

    Article  CAS  Google Scholar 

  10. Ramadori, G. & Christ, B. Cytokines and the hepatic acute-phase response. Semin. Liver Dis. 19, 141–155 (1999).

    Article  CAS  Google Scholar 

  11. Ankoma-Sey, V. Hepatic regeneration—revisiting the myth of prometheus. News Physiol. Sci. 14, 149–155 (1999).

    CAS  PubMed  Google Scholar 

  12. Michalopoulos, G.K. & DeFrances, M.C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  Google Scholar 

  13. Popovic, J.R. & Kozak, L.J. National Hospital Discharge Survey: Annual summary, 1998. National Center for Health Statistics. Vital Health Stat. 13. 148, 1–194 (2000).

    Google Scholar 

  14. Yarmush, M.L. et al. Hepatic tissue engineering. Development of critical technologies. Ann. NY Acad. Sci. 665, 238–252 (1992).

    Article  CAS  Google Scholar 

  15. Tsiaoussis, J., Newsome, P.N., Nelson, L.J., Hayes, P.C. & Plevris, J.N. Which hepatocyte will it be? Hepatocyte choice for bioartifical liver support systems. Liver Tansplant. 7, 2–10 (2001).

    Article  CAS  Google Scholar 

  16. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 297, 559–563 (2001).

    Article  Google Scholar 

  17. Fondevila, C., Busuttil, R.W. & Kupiec-Weglinski, J.W. Hepatic ischemia/reperfusion injury—a fresh look. Exp. Mol. Pathol. 74, 86–93 (2003).

    Article  CAS  Google Scholar 

  18. Neubauer, K., Saile, B. & Ramadori, G. Liver fibrosis and altered matrix synthesis. Can. J. Gastroenterol. 15, 187–193 (2001).

    Article  CAS  Google Scholar 

  19. Gardner, J.P. et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl. Acad. Sci. USA 100, 4498–4503 (2003).

    Article  CAS  Google Scholar 

  20. Jayaraman, A., Yarmush, M.L. & Roth, C.M. Evaluation of an in vitro model of hepatic inflammatory response by gene expression profiling. Tissue Eng. 11, 50–63 (2005).

    Article  CAS  Google Scholar 

  21. Balis, U.J. et al. Oxygen consumption characteristics of porcine hepatocytes. Metab. Eng. 1, 49–62 (1999).

    Article  CAS  Google Scholar 

  22. Foy, B.D., Rotem, A., Toner, M., Tompkins, R.G. & Yarmush, M.L. A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design. Cell Transplant. 3, 515–527 (1994).

    Article  CAS  Google Scholar 

  23. Griffith, L.G. & Naughton, G. Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1016 (2002).

    Article  CAS  Google Scholar 

  24. Nahmias, Y., Schwartz, R.E., Wei-Shou, H., Verfaillie, C.M. & Odde, D.J. Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng. 12, 1627–1638 (2006).

    Article  CAS  Google Scholar 

  25. Bhatia, S.N., Balis, U.J., Yarmush, M.L. & Toner, M. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci. Polym. Ed. 9, 1137–1160 (1998).

    Article  CAS  Google Scholar 

  26. Bhatia, S.N., Balis, U.J., Yarmush, M.L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    Article  CAS  Google Scholar 

  27. Goulet, F., Normand, C. & Morin, O. Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8, 1010–1018 (1988).

    Article  CAS  Google Scholar 

  28. Nahmias, Y., Casali, M., Barbe, L., Berthiaume, F. & Yarmush, M.L. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43, 257–265 (2006).

    Article  CAS  Google Scholar 

  29. Ito, Y., Bethea, M.W., Abril, E.R. & McCuskey, R.S. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 10, 391–400 (2003).

    Article  CAS  Google Scholar 

  30. Nahmias, Y.K., Gao, B.Z. & Odde, D.J. Dimensionless parameters for the design of optical traps and laser guidance systems. Appl. Opt. 43, 3999–4006 (2004).

    Article  Google Scholar 

  31. Nahmias, Y., Schwartz, R.E., Verfaillie, C.M. & Odde, D.J. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92, 129–136 (2005).

    Article  CAS  Google Scholar 

  32. Odde, D.J. & Renn, M.J. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 17, 385–389 (1999).

    Article  CAS  Google Scholar 

  33. Odde, D.J. & Renn, M.J. Laser-guided direct writing of living cells. Biotechnol. Bioeng. 67, 312–318 (2000).

    Article  CAS  Google Scholar 

  34. Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 (1988).

    Article  CAS  Google Scholar 

  35. Vernon, R.B., Angello, J.C., Iruela-Arispe, M.L., Lane, T.F. & Sage, E.H. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547 (1992).

    CAS  PubMed  Google Scholar 

  36. Nahmias, Y.K. & Odde, D.J. Analysis of radiation forces in laser trapping and laser-guided direct writing applications. IEEE J. Quantum Electron. 38, 131–141 (2002).

    Article  CAS  Google Scholar 

  37. Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K. & Block, S.M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

    Article  CAS  Google Scholar 

  38. Liang, H. et al. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J. 70, 1529–1533 (1996).

    Article  CAS  Google Scholar 

  39. Renn, M.J. & Pastel, R. Particle manipulation and surface patterning by laser guidance. J. Vacuum Sci. Technol. B 16, 3859–3863 (1998).

    Article  CAS  Google Scholar 

  40. Renn, M.J. et al. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253–3256 (1995).

    Article  CAS  Google Scholar 

  41. Cleaver, O. & Melton, D.A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    Article  CAS  Google Scholar 

  42. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    Article  CAS  Google Scholar 

  43. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  Google Scholar 

  44. Dunn, J.C.Y., Tompkins, R.G. & Yarmush, M.L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol. Prog. 7, 237–245 (1991).

    Article  CAS  Google Scholar 

  45. Narmoneva, D.A., Vukmirovic, R., Davis, M.E., Kamm, R.D. & Lee, R.T. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110, 962–968 (2004).

    Article  Google Scholar 

  46. Akselrod, G.M. et al. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J. 91, 3465–3473 (1006).

    Article  Google Scholar 

  47. Ho, C.-T., Lin, R.-Z., Chang, W.-Y., Chang, H.-Y. & Liu, C.-H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 6, 724–734 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Odde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahmias, Y., Odde, D. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic–endothelial sinusoid-like structures. Nat Protoc 1, 2288–2296 (2006). https://doi.org/10.1038/nprot.2006.386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.386

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing