Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos

Abstract

This protocol describes a method to detect in vivo associations between proteins and DNA in developing Drosophila embryos. It combines formaldehyde crosslinking and immunoprecipitation of protein-bound sequences with genome-wide analysis using microarrays. After crosslinking, nuclei are enriched using differential centrifugation and the chromatin is sheared by sonication. Antibodies specifically recognizing wild-type protein or, alternatively, a genetically encoded epitope tag are used to enrich for specifically bound DNA sequences. After purification and polymerase chain reaction-based amplification, the samples are fluorescently labeled and hybridized to genomic tiling microarrays. This protocol has been successfully used to study different tissue-specific transcription factors, and is generally applicable to in vivo analysis of any DNA-binding proteins in Drosophila embryos. The full protocol, including the collection of embryos and the collection of raw microarray data, can be completed within 10 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematical overview of ChIP-on-chip experiments.
Figure 2: Overview of the steps outlined in this protocol.
Figure 3: Enriched sequences can be identified by comparing ChIPs performed with specific anti-Mef2 or preimmune antisera.
Figure 4: Crosslinked chromatin can be sheared reproducibly by sonication.
Figure 5: Enrichment of a known Mef2-binding site within the Act57B locus.
Figure 6: SAM analysis using TM4's MeV module reveals sequences significantly enriched in anti-Mef2 but not in mock ChIPs.

Similar content being viewed by others

References

  1. Galas, D.J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein–DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  Google Scholar 

  2. Fried, M. & Crothers, D.M. Equilibria and kinetics of lac repressor–operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  3. Strutt, H. & Paro, R. Mapping DNA target sites of chromatin proteins in vivo by formaldehyde crosslinking. Methods Mol. Biol. 119, 455–467 (1999).

    CAS  PubMed  Google Scholar 

  4. Toth, J. & Biggin, M.D. The specificity of protein–DNA crosslinking by formaldehyde: in vitro and in Drosophila embryos. Nucleic Acids Res. 28, e4 (2000).

    Article  CAS  Google Scholar 

  5. Orlando, V. & Paro, R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–1198 (1993).

    Article  CAS  Google Scholar 

  6. Walter, J. & Biggin, M.D. Measurement of in vivo DNA binding by sequence-specific transcription factors using UV cross-linking. Methods 11, 215–224 (1997).

    Article  CAS  Google Scholar 

  7. Solano, P.J. et al. Genome-wide identification of in vivo Drosophila Engrailed-binding DNA fragments and related target genes. Development 130, 1243–1254 (2003).

    Article  CAS  Google Scholar 

  8. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  9. Dorak, M. Real Time PCR (Taylor & Francis, Oxford, 2006).

    Google Scholar 

  10. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  11. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  Google Scholar 

  12. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  Google Scholar 

  13. Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell 16, 199–209 (2004).

    Article  CAS  Google Scholar 

  14. Alekseyenko, A.A., Larschan, E., Lai, W.R., Park, P.J. & Kuroda, M.I. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20, 848–857 (2006).

    Article  CAS  Google Scholar 

  15. Gilfillan, G.D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20, 858–870 (2006).

    Article  CAS  Google Scholar 

  16. Legube, G., McWeeney, S.K., Lercher, M.J. & Akhtar, A. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev. 20, 871–883 (2006).

    Article  CAS  Google Scholar 

  17. Birch-Machin, I. et al. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol. 6, R63 (2005).

    Article  Google Scholar 

  18. Sandmann, T. et al. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807 (2006).

    Article  CAS  Google Scholar 

  19. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  Google Scholar 

  20. Wei, C.L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    Article  CAS  Google Scholar 

  21. Greil, F., Moorman, C. & van Steensel, B. [16] DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359 (2006).

    Article  CAS  Google Scholar 

  22. Moorman, C. et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103, 12027–12032 (2006).

    Article  CAS  Google Scholar 

  23. Bulyk, M.L. DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430 (2006).

    Article  CAS  Google Scholar 

  24. Orian, A. Chromatin profiling, DamID and the emerging landscape of gene expression. Curr. Opin. Genet. Dev. 16, 157 (2006).

    Article  CAS  Google Scholar 

  25. Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360 (2004).

    Article  CAS  Google Scholar 

  26. Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protocols 1, 729 (2006).

    Article  CAS  Google Scholar 

  27. Hanlon, S.E. & Lieb, J.D. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr. Opin. Genet. Dev. 14, 697–705 (2004).

    Article  CAS  Google Scholar 

  28. Simon, R., Radmacher, M.D. & Dobbin, K. Design of studies using DNA microarrays. Genet. Epidemiol. 23, 21–36 (2002).

    Article  Google Scholar 

  29. Dobbin, K., Shih, J.H. & Simon, R. Statistical design of reverse dye microarrays. Bioinformatics 19, 803–810 (2003).

    Article  CAS  Google Scholar 

  30. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32 (suppl.): 496–501 (2002).

    Article  CAS  Google Scholar 

  31. Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004).

    Article  CAS  Google Scholar 

  32. Buck, M.J., Nobel, A.B. & Lieb, J.D. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 6, R97 (2005).

    Article  Google Scholar 

  33. Gibbons, F.D., Proft, M., Struhl, K. & Roth, F.P. Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization. Genome Biol. 6, R96 (2005).

    Article  Google Scholar 

  34. Ji, H. & Wong, W.H. TileMap create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636 (2005).

    Article  CAS  Google Scholar 

  35. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  36. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  Google Scholar 

  37. Sullivan, M., Ashburner, R. & Hawley, S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000).

    Google Scholar 

  38. Strutt, H., Cavalli, G. & Paro, R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 16, 3621–3632 (1997).

    Article  CAS  Google Scholar 

  39. Campos-Ortega, J.A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, Heidelberg, 1985).

    Book  Google Scholar 

  40. Liu, C.L., Schreiber, S.L. & Bernstein, B.E. Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4, 19 (2003).

    Article  CAS  Google Scholar 

  41. Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51–54 (2003).

    Article  CAS  Google Scholar 

  42. Ryder, E., Jackson, R., Ferguson-Smith, A. & Russell, S. MAMMOT—a set of tools for the design, management and visualization of genomic tiling arrays. Bioinformatics 22, 883–884 (2006).

    Article  CAS  Google Scholar 

  43. Kelly, K.K., Meadows, S.M. & Cripps, R.M. Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages. Mech. Dev. 110, 39–50 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the laboratories of Robert White, Steve Russell (Cambridge) and Renato Paro (Basel) for sharing their ChIP (on chip) protocols with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen E M Furlong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandmann, T., Jakobsen, J. & Furlong, E. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc 1, 2839–2855 (2006). https://doi.org/10.1038/nprot.2006.383

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.383

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing