Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cell cycle synchronization of tobacco BY-2 cells

Abstract

Synchronization is a powerful technique for understanding cell cycle events. Here, we describe the procedure for synchronizing tobacco bright yellow 2 (BY-2) cell line, with which an exceptionally high level of synchrony can be achieved. It basically relies on an “arrest-and-release” strategy using aphidicolin, an inhibitor of DNA replication, and propyzamide, a plant-microtubule disruptant. In a single-step process using aphidicolin alone, a cell population with about 70% of the cells at mitosis can be achieved, whereas by a two-step method using the two inhibitors sequentially, the level of synchrony can reach over 90%. The method of choice depends not only on the peak mitotic cell proportion but also on the cell cycle stage that is targeted for analysis. Both procedures take about 1.5 days, and cell cycle progression can be observed from the S phase to the next G1 phase at about 12 h after a 24 h-period treatment with aphidicolin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A bright-field image of tobacco BY-2 cells at 6 h after aphidicolin release.
Figure 2: Brief illustration of washing equipment.
Figure 3: Fluorescence microscopic images of nuclei and chromosomes of BY-2 cells at various stages of the cell cycle.
Figure 4: Anticipated results of BY-2 synchronization.

Similar content being viewed by others

References

  1. Uzbekov, R.E. Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochemistry 69, 485–496 (2004).

    CAS  PubMed  Google Scholar 

  2. Robbins, E. & Marcus, P.I. Mitotically synchronized mammalian cells: a simple method for obtaining large populations. Science 144, 1152–1153 (1964).

    Article  CAS  Google Scholar 

  3. Walker, G.M. Synchronization of yeast cell populations. Methods Cell Sci. 21, 87–93 (1999).

    Article  CAS  Google Scholar 

  4. Spudich, J.L. & Sager, R. Regulation of the Chlamydomonas cell cycle by light and dark. J. Cell Biol. 85, 136–145 (1980).

    Article  CAS  Google Scholar 

  5. Nagata, T. When I encountered tobacco BY-2 cells! in Tobacco BY-2 cells: Biotech. Agricul. Forest Vol 53 (eds. Nagata, T., Hasezawa, S. & Inze, D.) 1–6 (Springer-Verlag, Berlin, Heidelberg, New York, 2004).

    Chapter  Google Scholar 

  6. Kato, K. et al. Liquid suspension culture of tobacco cells. Proc. IV IFS: Ferment. Technol. Today 689–695 (1972).

  7. Nagata, T., Nemoto, Y. & Hasezawa, S. Tobacco BY-2 cell line as the “HeLa” cells in the cell biology of higher plants. Int. Rev. Cytol. 132, 1–30 (1992).

    Article  CAS  Google Scholar 

  8. Nagata, T. & Kumagai, F. Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods Cell Sci. 21, 123–127 (1999).

    Article  CAS  Google Scholar 

  9. Nagata, T., Okada, K. & Takebe, I. Mitotic protoplasts and their infection with tobacco mosaic virus RNA encapsulated in liposomes. Plant Cell Rep. 1, 250–252 (1982).

    Article  CAS  Google Scholar 

  10. Menges, M. & Murray, J.A. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203–212 (2002).

    Article  CAS  Google Scholar 

  11. Kakimoto, T. & Shibaoka, H. Cytoskeletal ultrastructure of phragmoplast–nuclei complexes isolated from cultured tobacco cells. Protoplasma Suppl. 2, 95–103 (1988).

    Article  Google Scholar 

  12. Sano, T., Kuraya, Y., Amino, S. & Nagata, T. Phosphate as a limiting factor for the cell division of tobacco BY-2 cells. Plant Cell Physiol. 40, 1–8 (1999).

    Article  Google Scholar 

  13. Ishida, S., Takahashi, Y. & Nagata, T. Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells. Proc. Natl. Acad. Sci. USA 90, 11152–11156 (1993).

    Article  CAS  Google Scholar 

  14. Ehsan, H. et al. Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett. 422, 165–169 (1998).

    Article  CAS  Google Scholar 

  15. Laureys, F. et al. A low content in zeatin type cytokinins is not restrictive for the occurrence of G1/S transition in tobacco BY-2 cells. FEBS Lett. 460, 123–128 (1999).

    Article  CAS  Google Scholar 

  16. Świątek, A., Lenjou, M., Van Bockstaele, D., Inzé, D. & Van Onckelen, H. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol. 128, 201–211 (2002).

    Article  Google Scholar 

  17. Sano, T. et al. Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett. 580, 597–602 (2006).

    Article  CAS  Google Scholar 

  18. Setiady, Y.Y. et al. Tobacco mitotic cyclins: cloning, characterization, gene expression and functional assay. Plant J. 8, 949–957 (1995).

    Article  CAS  Google Scholar 

  19. Ito, M. et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell 10, 331–341 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C. & Murray, J.A.H. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol. 119, 343–352 (1999).

    Article  CAS  Google Scholar 

  21. Combettes, B. et al. Study of phase-specific gene expression in synchronized tobacco cells. Methods Cell Sci. 21, 109–121 (1999).

    Article  CAS  Google Scholar 

  22. Reichheld, J.P., Sonobe, S., Clément, B., Chaubet, N. & Gigot, C Cell cycle-regulated histone gene expression in synchronized plant cells. Plant J. 7, 245–252 (1995).

    Article  CAS  Google Scholar 

  23. Sekine, M. et al. Isolation and characterization of the E2F-like gene in plants. FEBS Lett. 460, 117–122 (1999).

    Article  CAS  Google Scholar 

  24. Hasezawa, S. & Kumagai, F. Dynamic changes and the role of the cytoskeleton during the cell cycle in higher plant cells. Int. Rev. Cytol. 214, 161–191 (2002).

    Article  CAS  Google Scholar 

  25. Mayo, K.J., Gonzales, B.J. & Mason, H.S. Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens. Nat. Protocols 1, 1105–1111 (2006).

    Article  CAS  Google Scholar 

  26. Kumagai, F. et al. Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol. 42, 723–732 (2001).

    Article  CAS  Google Scholar 

  27. Kutsuna, N., Kumagai, F., Sato, M.H. & Hasezawa, S. Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol. 44, 1045–1054 (2003).

    Article  CAS  Google Scholar 

  28. Sano, T., Higaki, T., Oda, Y., Hayashi, T. & Hasezawa, S. Appearance of actin microfilament “twin-peaks” in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J. 44, 595–605 (2005).

    Article  CAS  Google Scholar 

  29. Galbraith, D.W. et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).

    Article  CAS  Google Scholar 

  30. Linsmaier, E.M. & Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18, 100–127 (1964).

    Article  Google Scholar 

  31. Planchais, S. et al. Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J. 12, 191–202 (1997).

    Article  CAS  Google Scholar 

  32. Herbert, R.J. et al. Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. J. Exp. Bot. 52, 1615–1623 (2001).

    CAS  PubMed  Google Scholar 

  33. Porceddu, A. et al. A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. J. Biol. Chem. 276, 36354–36360 (2001).

    Article  CAS  Google Scholar 

  34. Miyake, T., Hasezawa, S. & Nagata, T. Role of cytoskeletal components in the migration of nuclei during the cell cycle transition from G1 phase to S phase of tobacco BY-2 cells. J. Plant Physiol. 150, 528–536 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumi Kumagai-Sano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai-Sano, F., Hayashi, T., Sano, T. et al. Cell cycle synchronization of tobacco BY-2 cells. Nat Protoc 1, 2621–2627 (2006). https://doi.org/10.1038/nprot.2006.381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.381

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing