Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Time-lapse imaging of dendritic spines in vitro

Abstract

Dendritic spines are small protrusions present postsynaptically at 90% of excitatory synapses in the brain. Spines undergo rapid spontaneous changes in shape that are thought to be important for alterations in synaptic connectivity underlying learning and memory. Visualization of these dynamic changes in spine morphology are especially challenging because of the small size of spines (1 μm). Here we describe a microscope system, based on a spinning-disk confocal microscope, suitable for imaging mature dendritic spines in brain slice preparations, with a time resolution of seconds. We discuss two commonly used in vitro brain slice preparations and methods for transfecting them. Preparation and transfection require approximately 1 d, after which slices must be cultured for at least 21 d to obtain spines of mature morphology. We also describe imaging and computer analysis routines for studying spine motility. These procedures require in the order of 2 to 4 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The imaging and electrophysiology station we currently use in our laboratory.
Figure 2: Motility plots.
Figure 3: Spine motility, depicted as changes in the shape factor over time.

Similar content being viewed by others

References

  1. Gray, E.G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183, 1592–1593 (1959).

    Article  CAS  Google Scholar 

  2. Matus, A., Ackermann, M., Pehling, G., Byers, H.R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7590–7594 (1982).

    Article  CAS  Google Scholar 

  3. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  4. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  Google Scholar 

  5. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 3, 887–894 (2000).

    Article  CAS  Google Scholar 

  6. Roelandse, M., Welman, A., Wagner, U., Hagmann, J. & Matus, A. Focal motility determines the geometry of dendritic spines. Neuroscience 121, 39–49 (2003).

    Article  CAS  Google Scholar 

  7. Allison, D.W., Gelfand, V.I., Spector, I. & Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  Google Scholar 

  8. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  Google Scholar 

  9. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  Google Scholar 

  10. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  11. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  12. Kaech, S., Ludin, B. & Matus, A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17, 1189–1199 (1996).

    Article  CAS  Google Scholar 

  13. Kaech, S., Parmar, H., Roelandse, M., Bornmann, C. & Matus, A. Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proc. Natl. Acad. Sci. USA 98, 7086–7092 (2001).

    Article  CAS  Google Scholar 

  14. Goldman, R. & Spector, D.L. Live Cell Imaging: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2005).

    Google Scholar 

  15. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  Google Scholar 

  16. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  Google Scholar 

  17. Ehrengruber, M.U. et al. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 96, 7041–7046 (1999).

    Article  CAS  Google Scholar 

  18. Griesbeck, O., Korte, M., Gravel, C., Bonhoeffer, T. & Thoenen, H. Rapid gene transfer into cultured hippocampal neurons and acute hippocampal slices using adenoviral vectors. Brain Res. Mol. Brain Res. 44, 171–177 (1997).

    Article  CAS  Google Scholar 

  19. Moriyoshi, K., Richards, L.J., Akazawa, C., O'Leary, D.D. & Nakanishi, S. Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16, 255–260 (1996).

    Article  CAS  Google Scholar 

  20. Lo, D.C., McAllister, A.K. & Katz, L.C. Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13, 1263–1268 (1994).

    Article  CAS  Google Scholar 

  21. O'Brien, J.A. & Lummis, S.C.R. Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat. Prot. 1, 977–981 (2006).

    Article  CAS  Google Scholar 

  22. Wirth, M.J. & Wahle, P. Biolistic transfection of organotypic cultures of rat visual cortex using a handheld device. J. Neurosci. Methods 125, 45–54 (2003).

    Article  CAS  Google Scholar 

  23. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  24. Kawamura, S-i., Negishi, H., Otsuki, S. & Tomosada, N. Confocal laser microscope scanner and CCD camera. Yokogawa Technical Report English Edition No. 33 〈http://www.yokogawa.com/rd/pdf/TR/rd-tr-r00033-005.pdf〉 (2002).

  25. Gahwiler, B.H. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329–342 (1981).

    Article  CAS  Google Scholar 

  26. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  27. Gahwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A. & Thompson, S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  CAS  Google Scholar 

  28. McAllister, A.K. Biolistic transfection of neurons. Sci. STKE 2000, PL1 (2000).

    Article  CAS  Google Scholar 

  29. Kaech, S., Fischer, M., Doll, T. & Matus, A. Isoform specificity in the relationship of actin to dendritic spines. J. Neurosci. 17, 9565–9572 (1997).

    Article  CAS  Google Scholar 

  30. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

  31. Roelandse, M. & Matus, A. Hypothermia-associated loss of dendritic spines. J. Neurosci. 24, 7843–7847 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Matus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Dendritic spine mobility (MOV 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkuyl, J., Matus, A. Time-lapse imaging of dendritic spines in vitro. Nat Protoc 1, 2399–2405 (2006). https://doi.org/10.1038/nprot.2006.357

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.357

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing