Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Profiling of DNA replication timing in unsynchronized cell populations

Abstract

Profiling chromatin in a particular cell type provides a valuable 'signature' for cell identity and developmental stage. One approach has been to assay and use the timing of DNA replication across a panel of loci as an indicator of chromatin structure. This epigenetic profiling used on pluripotent embryonic stem (ES) cells has reliably distinguished them from cells that have a more restricted lineage potential. Thus, such an approach may become increasingly useful for understanding the molecular basis of pluripotency and lineage induction, especially in the context of stem-cell therapy. Here I describe in detail the DNA replication timing method, whereby unsynchronized cell populations are pulse-labeled with 5-bromo-2′-deoxyuridine (BrdU), fractionated according to cell-cycle stage and the abundance of candidate sequences within newly replicated DNA is determined by PCR. This robust protocol has been used consistently by several laboratories and might offer some advantages over conventional transcription-based profiling for characterizing cell populations. The procedure requires 3–4 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General outline of the DNA replication timing procedure and controls.
Figure 2

Similar content being viewed by others

References

  1. Gilbert, D.M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    CAS  PubMed  Google Scholar 

  2. Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 32, 438–442 (2002).

    PubMed  Google Scholar 

  3. MacAlpine, D.M., Rodriguez, H.K. & Bell, S.P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 575 (2004).

    CAS  Google Scholar 

  5. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    CAS  PubMed  Google Scholar 

  6. Lin, C.M., Fu, H., Martinovsky, M., Bouhassira, E. & Aladjem, M.I. Dynamic alterations of replication timing in mammalian cells. Curr. Biol. 13, 1019–1028 (2003).

    CAS  PubMed  Google Scholar 

  7. Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat. Cell Biol. 5, 668–674 (2003).

    CAS  PubMed  Google Scholar 

  8. Gomez, M. & Brockdorff, N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc. Natl. Acad. Sci. USA 101, 6923–6928 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 (1996).

    CAS  PubMed  Google Scholar 

  10. Goren, A. & Cedar, H. Replicating by the clock. Nat. Rev. Mol. Cell. Biol. 4, 25–32 (2003).

    CAS  PubMed  Google Scholar 

  11. Calza, R.E., Eckhardt, L.A., DelGiudice, T. & Schildkraut, C.L. Changes in gene position are accompanied by a change in time of replication. Cell 36, 689–696 (1984).

    CAS  PubMed  Google Scholar 

  12. Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A. & Nag, A. Replication timing of genes and middle repetitive sequences. Science 224, 686–692 (1984).

    CAS  PubMed  Google Scholar 

  13. Hatton, K.S. et al. Replication program of active and inactive multigene families in mammalian cells. Mol. Cell. Biol. 8, 2149–2158 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhar, V., Mager, D., Iqbal, A. & Schildkraut, C.L. The coordinate replication of the human beta-globin gene domain reflects its transcriptional activity and nuclease hypersensitivity. Mol. Cell. Biol. 8, 4958–4965 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Epner, E., Forrester, W.C. & Groudine, M. Asynchronous DNA replication within the human beta-globin gene locus. Proc. Natl. Acad. Sci. USA 85, 8081–8085 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Taljanidisz, J., Popowski, J. & Sarkar, N. Temporal order of gene replication in Chinese hamster ovary cells. Mol. Cell. Biol. 9, 2881–2889 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    CAS  PubMed  Google Scholar 

  18. Selig, S., Okumura, K., Ward, D.C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bickmore, W.A. & Carothers, A.D. Factors affecting the timing and imprinting of replication on a mammalian chromosome. J. Cell Sci. 108, 2801–2809 (1995).

    CAS  PubMed  Google Scholar 

  20. Boggs, B.A. & Chinault, A.C. Analysis of DNA replication by fluorescence in situ hybridization. Methods 13, 259–270 (1997).

    CAS  PubMed  Google Scholar 

  21. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    CAS  PubMed  Google Scholar 

  22. Knoll, J.H., Cheng, S.D. & Lalande, M. Allele specificity of DNA replication timing in the Angelman/Prader- Willi syndrome imprinted chromosomal region. Nat. Genet. 6, 41–46 (1994).

    CAS  PubMed  Google Scholar 

  23. Gunaratne, P.H., Nakao, M., Ledbetter, D.H., Sutcliffe, J.S. & Chinault, A.C. Tissue-specific and allele-specific replication timing control in the imprinted human Prader-Willi syndrome region. Genes Dev. 9, 808–820 (1995).

    CAS  PubMed  Google Scholar 

  24. Simon, I. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932 (1999).

    CAS  PubMed  Google Scholar 

  25. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    CAS  PubMed  Google Scholar 

  26. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    CAS  PubMed  Google Scholar 

  27. Hansen, R.S., Canfield, T.K. & Gartler, S.M. Reverse replication timing for the XIST gene in human fibroblasts. Hum. Mol. Genet. 4, 813–820 (1995).

    CAS  PubMed  Google Scholar 

  28. Kawame, H., Gartler, S.M. & Hansen, R.S. Allele-specific replication timing in imprinted domains: absence of asynchrony at several loci. Hum. Mol. Genet. 4, 2287–2293 (1995).

    CAS  PubMed  Google Scholar 

  29. Mesner, L.D., Hamlin, J.L. & Dijkwel, P.A. The matrix attachment region in the Chinese hamster dihydrofolate reductase origin of replication may be required for local chromatid separation. Proc. Natl. Acad. Sci. USA 100, 3281–3286 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, Z.E. & Higgs, D.R. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum. Mol. Genet. 8, 1373–1386 (1999).

    CAS  PubMed  Google Scholar 

  31. Gilbert, D.M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc. Natl. Acad. Sci. USA 83, 2924–2928 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilbert, D.M. & Cohen, S.N. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 50, 59–68 (1987).

    CAS  PubMed  Google Scholar 

  33. Hansen, R.S., Canfield, T.K., Lamb, M.M., Gartler, S.M. & Laird, C.D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    CAS  PubMed  Google Scholar 

  34. Strehl, S., LaSalle, J.M. & Lalande, M. High-resolution analysis of DNA replication domain organization across an R/G-band boundary. Mol. Cell. Biol. 17, 6157–6166 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cimbora, D.M. et al. Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

    CAS  PubMed  Google Scholar 

  37. Hiratani, I., Leskovar, A. & Gilbert, D.M. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc. Natl. Acad. Sci. USA 101, 16861–16866 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    CAS  PubMed  Google Scholar 

  39. Furst, A., Brown, E.H., Braunstein, J.D. & Schildkraut, C.L. alpha-Globulin sequences are located in a region of early-replicating DNA in murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 78, 1023–1027 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmquist, G.P. Role of replication time in the control of tissue-specific gene expression. Am. J. Hum. Genet. 40, 151–173 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mileham, P. & Brown, S.D. YAC clone contigs covering 5 Mb of a repeat sequence island on the mouse X chromosome. Mamm. Genome 7, 253–261 (1996).

    CAS  PubMed  Google Scholar 

  42. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  43. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    CAS  PubMed  Google Scholar 

  44. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaganman, I. ESCs keep their options open. Nat. Methods 3, 419 (2006).

    CAS  PubMed  Google Scholar 

  46. Flintoft, L. Poised for action. Nat. Rev. Genet. 7, 410 (2006).

    Google Scholar 

  47. LaSalle, J. & Lalande, M. Flow cytometry and FISH to investigate allele-specific replication timing and homologous association of imprinted chromosomes. Methods Mol. Biol. 181, 181–192 (2001).

    CAS  PubMed  Google Scholar 

  48. Hibbard, M.K., Strehl, S. & Lalande, M. Replication timing of CD4 and CD8 in single-positive peripheral blood lymphocytes. Cell. Immunol. 198, 61–68 (1999).

    CAS  PubMed  Google Scholar 

  49. Donaldson, A.D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet. 21, 444–449 (2005).

    CAS  PubMed  Google Scholar 

  50. Schwaiger, M. & Schubeler, D. A question of timing: emerging links between transcription and replication. Curr. Opin. Genet. Dev. 16, 177–183 (2006).

    CAS  PubMed  Google Scholar 

  51. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1987).

    Google Scholar 

  52. Giulietti, A. et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401 (2001).

    CAS  PubMed  Google Scholar 

  53. Darzynkiewicz, Z., Juan, G. & Bedner, E. in Current Protocols in Cell Biology (eds. Bonifacino, J. S., Dasso, M., Harford, J. B., Lippincott-Schwartz, J. & Yamada, K.M.) (Wiley, Indianapolis, IN, 1999).

    Google Scholar 

Download references

Acknowledgements

I would like to thank Amanda G. Fisher and Matthias Merkenschlager for allowing me to embark on this exciting area of research, Stan Gartler and Scott Hansen for their invaluable help and advice, Helle F. Jørgensen, Olivia Alder and Marie-Laure Caparros for reading this manuscript and Graham Reed for photographic assistance. This work was supported by the Medical Research Council, UK, Imperial College London, UK and by a MRC Collaborative Career Development Fellowship in Stem Cell Research funded by the Parkinson's disease Society (V.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Azuara.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuara, V. Profiling of DNA replication timing in unsynchronized cell populations. Nat Protoc 1, 2171–2177 (2006). https://doi.org/10.1038/nprot.2006.353

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.353

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing