Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Verification of automated peptide identifications from proteomic tandem mass spectra

Abstract

Shotgun proteomics yields tandem mass spectra of peptides that can be identified by database search algorithms. When only a few observed peptides suggest the presence of a protein, establishing the accuracy of the peptide identifications is necessary for accepting or rejecting the protein identification. In this protocol, we describe the properties of peptide identifications that can differentiate legitimately identified peptides from spurious ones. The chemistry of fragmentation, as embodied in the 'mobile proton' and 'pathways in competition' models, informs the process of confirming or rejecting each spectral match. Examples of ion-trap and tandem time-of-flight (TOF/TOF) mass spectra illustrate these principles of fragmentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways in competition.
Figure 2
Figure 3: These two spectra were both identified as the doubly-charged sequence EIIGVVSQEPVLFATTIAENIR.
Figure 4: This chimeric spectrum is displayed two different ways because it contains fragment ions from two different peptides, DSDYYNMLLK (top) and M*DFSDYDLLK (bottom).
Figure 5: This spectrum was identified as a doubly charged SSLKAGALR (top).
Figure 6: Phosphopeptides can show distinct losses of phosphoric acid both from the precursor and from fragment ions.
Figure 7: This TOF/TOF spectrum was identified as the sequence AVREAAAGLSGPGR by the Mascot algorithm.
Figure 8: Special TOF/TOF fragment ions.
Figure 9: These two peptide identifications are evidence for the presence of calmodulin in a mouse sample.

Similar content being viewed by others

References

  1. Eng, J.K., McCormack, A.L. & Yates, J.R. III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  2. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  3. Washburn, M.P., Wolters, D. & Yates, J.R. III . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  4. Daikoku, T. et al. Proteomic analysis identifies immunophilin FK506 binding protein 4 (FKBP52) as a downstream target of Hoxa10 in the periimplantation mouse uterus. Mol. Endocrinol. 19, 683–697 (2005).

    Article  CAS  Google Scholar 

  5. Wysocki, V.H., Tsaprailis, G., Smith, L.L. & Breci, L.A. Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000).

    Article  CAS  Google Scholar 

  6. Paizs, B. & Suhai, S. Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005).

    Article  CAS  Google Scholar 

  7. Huang, Y., Wysocki, V.H., Tabb, D.L. & Yates, J.R. III . The influence of histidine on cleavage C-terminal to acidic residues in doubly protonated tryptic peptides. Int. J. Mass Spectrom. 219, 233–244 (2002).

    Article  CAS  Google Scholar 

  8. Schlosser, A., Pipkorn, R., Bossemeyer, D. & Lehmann, W.D. Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal. Chem. 73, 170–176 (2001).

    Article  CAS  Google Scholar 

  9. Reid, G.E., Roberts, K.D., Kapp, E.A. & Simpson, R.I. Statistical and mechanistic approaches to understanding the gas-phase fragmentation behavior of methionine sulfoxide containing peptides. J. Proteome Res. 3, 751–759 (2004).

    Article  CAS  Google Scholar 

  10. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004).

    Article  CAS  Google Scholar 

  11. Breci, L.A., Tabb, D.L., Yates, J.R. III. & Wysocki, V.H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003).

    Article  CAS  Google Scholar 

  12. Tabb, D.L. et al. Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal. Chem. 75, 1155–1163 (2003).

    Article  CAS  Google Scholar 

  13. Paizs, B. & Suhai, S. Towards understanding some ion intensity relationships for the tandem mass spectra of protonated peptides. Rapid Commun. Mass Spectrom. 16, 1699–1702 (2002).

    Article  CAS  Google Scholar 

  14. Tabb, D.L., Huang, Y., Wysocki, V.H. & Yates, J.R. III . Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76, 1243–1248 (2004).

    Article  CAS  Google Scholar 

  15. Ballard, K.D. & Gaskel, S.J. Dehydration of peptide [M+H]+ ions in the gas phase. J. Am. Soc. Mass Spectrom. 4, 477–481 (1993).

    Article  CAS  Google Scholar 

  16. Hunt, D.F., Yates, J.R. III, Shabanowitz, J., Winston, S. & Hauer, C.R. Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237 (1986).

    Article  CAS  Google Scholar 

  17. Jonscher, K.R. & Yates, J.R. III . The quadrupole ion trap mass spectrometer–a small solution to a big challenge. Anal. Biochem. 244, 1–15 (1997).

    Article  CAS  Google Scholar 

  18. Chernushevich, I.V., Loboda, A.V. & Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36, 849–865 (2001).

    Article  CAS  Google Scholar 

  19. Medzihradszky, K.F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000).

    Article  CAS  Google Scholar 

  20. Fenyo, D. & Beavis, R.C. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal. Chem. 75, 768–774 (2003).

    Article  Google Scholar 

  21. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  22. Geer, L.Y. et al. Open mass spectrometry search algorithm. J. Proteome Res. 3, 958–964 (2004).

    Article  CAS  Google Scholar 

  23. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

    Article  CAS  Google Scholar 

  24. Cargile, B.J., Bundy, J.L. & Stephenson, J.L. Jr. Potential for false positive identifications from large databases through tandem mass spectrometry. J. Proteome Res. 3, 1082–1085 (2004).

    Article  CAS  Google Scholar 

  25. Higdon, R., Hogan, J.M., Van Belle, G. & Kolker, E. Randomized sequence databases for tandem mass spectrometry peptide and protein identification. OMICS 9, 364–379 (2005).

    Article  CAS  Google Scholar 

  26. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  27. Chen, Y., Kwon, S.W., Kim, S.C. & Zhao, Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J. Proteome Res. 4, 998–1005 (2005).

    Article  CAS  Google Scholar 

  28. Gibbons, F.D., Elias, J.E., Gygi, S.P. & Roth, F.P. SILVER helps assign peptides to tandem mass spectra using intensity-based scoring. J. Am. Soc. Mass Spectrom. 15, 910–912 (2004).

    Article  CAS  Google Scholar 

  29. Lilley, K.S. & Friedman, D.B. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics 1, 401–409 (2004).

    Article  CAS  Google Scholar 

  30. Tabb, D.L., Narasimhan, C., Strader, M.B. & Hettich, R.L. DBDigger: reorganized proteomic database identification that improves flexibility and speed. Anal. Chem. 77, 2464–2474 (2005).

    Article  CAS  Google Scholar 

  31. Kapp, E.A. et al. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Anal. Chem. 75, 6251–6264 (2003).

    Article  CAS  Google Scholar 

  32. Geiger, T. & Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262, 785–794 (1987).

    CAS  PubMed  Google Scholar 

  33. Tsaprailis, G. et al. A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Anal. Chem. 76, 2083–2094 (2004).

    Article  CAS  Google Scholar 

  34. Bradshaw, R.A. Revised draft guidelines for proteomic data publication. Mol. Cell. Proteomics 4, 1223–1225 (2005).

    PubMed  Google Scholar 

  35. Carr, S. et al. The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol. Cell. Proteomics 3, 531–533 (2004).

    Article  CAS  Google Scholar 

  36. Yang, X. et al. DBParser: web-based software for shotgun proteomic data analyses. J. Proteome Res. 3, 1002–1008 (2004).

    Article  CAS  Google Scholar 

  37. Tabb, D.L., McDonald, W.H. & Yates, J.R. III . DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant P30 ES000267, by an American Cancer Society Institutional Research Grant (no. IRG-58-009-48) through the Sartain-Lanier Family Foundation and Vanderbilt-Ingram Cancer Center Discovery Grant Programs, and by the Vanderbilt Academic Venture Capital Fund. M. Tyska (Vanderbilt University; supported by a Career Development Award from the Crohn's and Colitis Foundation of America) contributed the spectra of mouse brush border proteins, and R. Peek and A. Franco (Vanderbilt University) contributed H. pylori membrane samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L Tabb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabb, D., Friedman, D. & Ham, AJ. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat Protoc 1, 2213–2222 (2006). https://doi.org/10.1038/nprot.2006.330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.330

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing