Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

DNA methylation: Bisulphite modification and analysis

Abstract

DNA methylation is an important epigenetic modification of DNA in mammalian genomes. DNA methylation patterns are established early in development, modulated during tissue-specific differentiation and disrupted in many disease states, including cancer. To understand further the biological functions of these changes, accurate and reproducible methods are required to fully analyze the DNA methylation sequence. Here, we describe the 'gold-standard' bisulphite conversion protocol that can be used to re-sequence DNA from mammalian cells in order to determine and quantify the methylation state of a gene or genomic region at single-nucleotide resolution. The process of bisulphite treatment exploits the different sensitivities of cytosine and 5-methylcytosine (5-MeC) to deamination by bisulphite under acidic conditions—in which cytosine undergoes conversion to uracil, whereas 5-MeC remains unreactive. Bisulphite conversion of DNA, in either single tubes or in a 96-well format, can be performed in a minimum of 8 h and a maximum of 18 h, depending on the amount and quality of starting DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the five critical steps in the bisulphite conversion and PCR amplification reaction.
Figure 2: Comparison of efficiency of bisulphite PCR amplification after different desalting and desulphonation procedures.
Figure 3: Examples of bisulphite PCR amplification evaluation.
Figure 4: Typical examples of direct and clonal PCR sequencing analysis after bisulphite conversion.

Similar content being viewed by others

References

  1. Warnecke, P.M. & Clark, S.J. DNA methylation profile of the mouse skeletal alpha-actin promoter during development and differentiation. Mol. Cell. Biol. 19, 164–172 (1999).

    Article  CAS  Google Scholar 

  2. Jones, P.A. Overview of cancer epigenetics. Semin. Hematol. 42, S3–S8 (2005).

    Article  CAS  Google Scholar 

  3. Grigg, G. & Clark, S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays 16, 431–436 (1994).

    Article  CAS  Google Scholar 

  4. Clark, S.J. & Frommer, M. in DNA and Nucleoprotein Structure In Vivo Springer-Verlag (eds. Saluz, H.P. & Wiebauer, K.) 123–132 (R.G. Landes Company, Austin, Texas, 1995).

    Google Scholar 

  5. Clark, S.J. & Frommer, M. in Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA (ed. Taylor, G.) 151–162 (CRC Press, New York, 1997).

    Google Scholar 

  6. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  Google Scholar 

  7. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    Article  CAS  Google Scholar 

  8. Rakyan, V.K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).

    Article  Google Scholar 

  9. Rauscher, F.J. It is time for a Human Epigenome Project. Cancer Res. 65, 11229 (2005).

    Article  CAS  Google Scholar 

  10. Murrell, A., Rakyan, V.K. & Beck, S. From genome to epigenome. Hum. Mol. Genet. 14 (Spec No. 1): R3–R10 (2005).

    Article  CAS  Google Scholar 

  11. Jones, P.A. & Martienssen, R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65, 11241–11246 (2005).

    Article  CAS  Google Scholar 

  12. Callinan, P.A. & Feinberg, A.P. The emerging science of epigenomics. Hum. Mol. Genet. 15 (Spec No. 1): R95–R101 (2006).

    Article  CAS  Google Scholar 

  13. Garber, K. Momentum building for human epigenome project. J. Natl. Cancer Inst. 98, 84–86 (2006).

    Article  Google Scholar 

  14. Esteller, M. The necessity of a human epigenome project. Carcinogenesis 27, 1121–1125 (2006).

    Article  CAS  Google Scholar 

  15. Singal, R. & Grimes, S.R. Microsoft Word macro for analysis of cytosine methylation by the bisulfite deamination reaction. Biotechniques 30, 116–120 (2001).

    Article  CAS  Google Scholar 

  16. Li, L.C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431 (2002).

    Article  CAS  Google Scholar 

  17. Tusnady, G.E., Simon, I., Varadi, A. & Aranyi, T. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res. 33, e9 (2005).

    Article  Google Scholar 

  18. Warnecke, P.M. et al. Identification and resolution of artifacts in bisulfite sequencing. Methods 27, 101–107 (2002).

    Article  CAS  Google Scholar 

  19. Grunau, C., Clark, S.J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, E65–5 (2001).

    Article  CAS  Google Scholar 

  20. Paul, C.L. & Clark, S.J. Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. Biotechniques 21, 126–133 (1996).

    Article  CAS  Google Scholar 

  21. Boyd, V.L. & Zon, G. Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal. Biochem. 326, 278–280 (2004).

    Article  CAS  Google Scholar 

  22. Lewin, J., Schmitt, A.O., Adorjan, P., Hildmann, T. & Piepenbrock, C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 20, 3005–3012 (2004).

    Article  CAS  Google Scholar 

  23. Han, W., Cauchi, S., Herman, J.G. & Spivack, S.D. DNA methylation mapping by tag-modified bisulfite genomic sequencing. Anal. Biochem. 355, 50–61 (2006).

    Article  CAS  Google Scholar 

  24. Tost, J., Dunker, J. & Gut, I.G. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156 (2003).

    Article  CAS  Google Scholar 

  25. Colella, S., Shen, L., Baggerly, K.A., Issa, J.P. & Krahe, R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35, 146–150 (2003).

    Article  CAS  Google Scholar 

  26. Laird, C.D. et al. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc. Natl. Acad. Sci. USA 101, 204–209 (2004).

    Article  CAS  Google Scholar 

  27. Schatz, P., Dietrich, D. & Schuster, M. Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF. Nucleic Acids Res. 32, e167 (2004).

    Article  Google Scholar 

  28. Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA 102, 15785–15790 (2005).

    Article  CAS  Google Scholar 

  29. Worm, J., Aggerholm, A. & Guldberg, P. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin. Chem. 47, 1183–1189 (2001).

    CAS  PubMed  Google Scholar 

  30. Guldberg, P., Worm, J. & Gronbaek, K. Profiling DNA methylation by melting analysis. Methods 27, 121–127 (2002).

    Article  CAS  Google Scholar 

  31. Yang, I. et al. Rapid quantification of DNA methylation through dNMP analysis following bisulfite-PCR. Nucleic Acids Res. 34, e61 (2006).

    Article  Google Scholar 

  32. Yamamoto, T. et al. Methylation assay by nucleotide incorporation: a quantitative assay for regional CpG methylation density. Biotechniques 36, 846–50 852, 854 (2004).

    Article  CAS  Google Scholar 

  33. Maekawa, M. et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability. Biochem. Biophys. Res. Commun. 262, 671–676 (1999).

    Article  CAS  Google Scholar 

  34. Bianco, T., Hussey, D. & Dobrovic, A. Methylation-sensitive, single-strand conformation analysis (MS-SSCA): A rapid method to screen for and analyze methylation. Hum. Mutat. 14, 289–293 (1999).

    Article  CAS  Google Scholar 

  35. Baumer, A., Wiedemann, U., Hergersberg, M. & Schinzel, A. A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Hum. Mutat. 17, 423–430 (2001).

    Article  CAS  Google Scholar 

  36. Sadri, R. & Hornsby, P.J. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res. 24, 5058–5059 (1996).

    Article  CAS  Google Scholar 

  37. Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    Article  CAS  Google Scholar 

  38. Eads, C.A. & Laird, P.W. Combined bisulfite restriction analysis (COBRA). Methods Mol. Biol. 200, 71–85 (2002).

    CAS  PubMed  Google Scholar 

  39. Gonzalgo, M.L. & Jones, P.A. Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE). Methods 27, 128–133 (2002).

    Article  CAS  Google Scholar 

  40. Kaminsky, Z.A., Assadzadeh, A., Flanagan, J. & Petronis, A. Single nucleotide extension technology for quantitative site-specific evaluation of metC/C in GC-rich regions. Nucleic Acids Res. 33, e95 (2005).

    Article  Google Scholar 

  41. El-Maarri, O., Herbiniaux, U., Walter, J. & Oldenburg, J. A rapid, quantitative, non-radioactive bisulfite-SNuPE- IP RP HPLC assay for methylation analysis at specific CpG sites. Nucleic Acids Res. 30, e25 (2002).

    Article  Google Scholar 

  42. Gitan, R.S., Shi, H., Chen, C.M., Yan, P.S. & Huang, T.H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158–164 (2002).

    Article  CAS  Google Scholar 

  43. Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).

    Article  Google Scholar 

  44. Thomassin, H., Kress, C. & Grange, T. MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res. 32, e168 (2004).

    Article  Google Scholar 

  45. Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).

    Article  CAS  Google Scholar 

  46. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

  47. Eads, C.A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, E32 (2000).

    Article  CAS  Google Scholar 

  48. Rand, K., Qu, W., Ho, T., Clark, S.J. & Molloy, P. Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods 27, 114–120 (2002).

    Article  CAS  Google Scholar 

  49. Zeschnigk, M. et al. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res. 32, e125 (2004).

    Article  Google Scholar 

  50. Cottrell, S.E. et al. A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res. 32, e10 (2004).

    Article  Google Scholar 

  51. Rand, K.N. et al. Headloop suppression PCR and its application to selective amplification of methylated DNA sequences. Nucleic Acids Res. 33, e127 (2005).

    Article  Google Scholar 

  52. Shaw, R.J., Akufo-Tetteh, E.K., Risk, J.M., Field, J.K. & Liloglou, T. Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 34, e78 (2006).

    Article  Google Scholar 

  53. Rand, K., Mitchell, S., Clark, S. & Molloy, P. Bisulphite differential denaturation PCR for analysis of DNA methylation. Epigenetics 1, 94–100 (2006).

    Article  Google Scholar 

  54. Warnecke, P.M. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25, 4422–4426 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Rebecca Hinshelwood for help with the figures. The work was partly supported by grants from NH and MRC to S.J.C. (ID9293811, ID293810, ID325622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S., Statham, A., Stirzaker, C. et al. DNA methylation: Bisulphite modification and analysis. Nat Protoc 1, 2353–2364 (2006). https://doi.org/10.1038/nprot.2006.324

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.324

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing