Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP)

Abstract

This protocol describes a directed evolution method for in vitro mutagenesis and recombination of polynucleotide sequences. The staggered extension process (StEP) is essentially a modified PCR that uses highly abbreviated annealing and extension steps to generate staggered DNA fragments and promote crossover events along the full length of the template sequence(s). The resulting library of chimeric polynucleotide sequence(s) is subjected to subsequent high-throughput functional analysis. The recombination efficiency of the StEP method is comparable to that of the most widely used in vitro DNA recombination method, DNA shuffling. However, the StEP method does not require DNA fragmentation and can be carried out in a single tube. This protocol can be completed in 4–6 h.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the StEP method.
Figure 2: Scheme of the GFP-based recombination test system.

Similar content being viewed by others

References

  1. Arnold, F.H. Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, F.H. (ed.) Evolutionary Protein Design (Advances in Protein Chemistry, Vol. 55) (Academic, San Diego, USA, 2001).

    Google Scholar 

  3. Schmidt-Dannert, C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40, 13125–13136 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Holland, J.F. Genetic algorithms. Sci. Am. 267, 66–72 (1992).

    Article  Google Scholar 

  6. Forrest, S. Genetic algorithms: principles of natural selection applied to computation. Science 261, 872–878 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, H. & Arnold, F.H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307–1308 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ninkovic, M., Dietrich, R., Aral, G. & Schwienhorst, A. High-fidelity in vitro recombination using a proofreading polymerase. Biotechniques 30, 530–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Shao, Z., Zhao, H., Giver, L. & Arnold, F.H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coco, W.M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs, M.D., Nevalainen, K.M. & Bergquist, P.L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Coco, W.M. et al. Growth factor engineering by degenerate homoduplex gene family recombination. Nat. Biotechnol. 20, 1246–1250 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ness, J.E. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ostermeier, M., Shim, J.H. & Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sieber, V., Martinez, C.A. & Arnold, F.H. Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bittker, J.A., Le, B.V. & Liu, D.R. Nucleic acid evolution and minimization by nonhomologous random recombination. Nat. Biotechnol. 20, 1024–1029 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volkov, A.A., Shao, Z. & Arnold, F.H. Recombination and chimeragenesis by in vitro heteroduplex formation and in vivo repair. Nucleic Acids Res. 27, e18 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Meyerhans, A., Vartanian, J.P. & Wainhobson, S. DNA recombination during PCR. Nucleic Acids Res. 18, 1687–1691 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, W.S., Bowman, E.H., Delviks, K.A. & Pathak, V.K. Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference. J. Virol. 71, 6028–6036 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, H. Staggered extension process in vitro DNA recombination. Methods Enzymol. 388, 42–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Aguinaldo, A.M. & Arnold, F. Staggered extension process (StEP) in vitro recombination. Methods Mol. Biol. 192, 235–239 (2002).

    CAS  PubMed  Google Scholar 

  25. Volkov, A.A. & Arnold, F.H. Methods for in vitro DNA recombination and random chimeragenesis. Methods Enzymol. 328, 447–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, H. & Arnold, F.H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Glieder, A., Farinas, E.T. & Arnold, F.H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20, 1135–1139 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ghadessy, F.J. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat. Biotechnol. 22, 755–759 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Maheshri, N., Koerber, J.T., Kaspar, B.K. & Schaffer, D.V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dion, M. et al. Modulation of the regioselectivity of a Bacillus alpha-galactosidase by directed evolution. Glycoconj. J. 18, 215–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. He, M., Yang, Z.Y., Nie, Y.F., Wang, J. & Xu, P.L. A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim. Biophys. Acta Gen. Subjects 1568, 1–6 (2001).

    Article  CAS  Google Scholar 

  32. Murashima, K., Kosugi, A. & Doi, R.H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol. Microbiol. 45, 617–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Bulter, T. et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl. Environ. Microbiol. 69, 987–995 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Z.L., Podust, L.M. & Guengerich, F.P. Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis. J. Biol. Chem. 280, 41090–41100 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki, K. et al. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J. Biol. Chem. 281, 10236–10242 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sheedy, C., Yau, K.Y.F., Hirama, T., MacKenzie, C.R. & Hall, J.C. Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families. J. Agric. Food Chem. 54, 3668–3678 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Innis, M.A., Myambo, K.B., Gelfand, D.H. & Brow, M.A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci. USA 85, 9436–9440 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Judo, M.S., Wedel, A.B. & Wilson, C. Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res. 26, 1819–1825 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Defense (N000140210725), National Science Foundation (BES-0348107), National Institutes of Health, and DuPont for supporting our work on development and applications of new directed evolution tools for protein science and engineering and metabolic engineering.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., first draft of the manuscript; W.Z., Box 2, Fig. 2, part of the Introduction and Anticipated Results; both authors participated in the editing and revision of the manuscript.

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Zha, W. In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP). Nat Protoc 1, 1865–1871 (2006). https://doi.org/10.1038/nprot.2006.309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.309

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing