Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative gas chromatography mass spectrometric analysis of 2′-deoxyinosine in tissue DNA

Abstract

Several studies examining DNA deamination have published levels of 2′-deoxyinosine that illustrated a large variation between studies. Most of them are the result of artifactual DNA deamination that occurs during the process of sample preparation, particularly acid hydrolysis. This protocol for measurement of 2′-deoxyinosine describes the use of nuclease P1 and alkaline phosphatase to achieve release of nucleosides from DNA, followed by HPLC prepurification with subsequent gas chromatography–mass spectrometry analysis of the nucleosides. It has been used in the measurement of the levels of 2′-deoxyinosine in DNA of commercial sources and DNA from cells and animal tissues, and gives values ranging from 3 to 7 2′-deoxyinosine per 106 2-deoxyadenosine. This protocol should take approximately 7 days to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deamination of 2′-deoxyadenosine forms 2′-deoxyinosine.
Figure 2: Overview of the three approaches in the study of DNA deamination products.
Figure 3: Reversed-phase HPLC separation of nucleosides using (a) authentic standards and (b) digested salmon testes DNA.
Figure 4: Mass spectra of (a) tri-TMS-2′-deoxyinosine, (b) tri-TMS-2′-deoxyadenosine and (c) tetra-TMS-2′-deoxyguanosine.
Figure 5
Figure 6: Gas chromatogram of purified 2′-deoxyguanosine.
Figure 7: Total ion chromatogram of the derivatized 2′-deoxyinosine (dIno, 6.89 min), 2′-deoxyadenosine (dAdo, 7.17 min) and 2′-amino-2′-deoxyadenosine (2′-aminoAdo, 8.05 min).

Similar content being viewed by others

References

  1. Wink, D.A. et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254, 1001–1003 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Spencer, J.P., Whiteman, M., Jenner, A. & Halliwell, B. Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic. Biol. Med. 28, 1039–1050 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Olinski, R. et al. DNA base modifications in chromatin of human cancerous tissues. FEBS Lett. 309, 193–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Toyokuni, S., Mori, T. & Dizdaroglu, M. DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int. J. Cancer 57, 123–128 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Spencer, J.P. et al. DNA damage in human respiratory tract epithelial cells: damage by gas phase cigarette smoke apparently involves attack by reactive nitrogen species in addition to oxygen radicals. FEBS Lett. 375, 179–182 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Dizdaroglu, M. Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275, 331–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Dong, M., Wang, C., Deen, W.M. & Dedon, P.C. Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations. Chem. Res. Toxicol. 16, 1044–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Li, C.Q. et al. Biological role of glutathione in nitric oxide-induced toxicity in cell culture and animal models. Free Radic. Biol. Med. 39, 1489–1498 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dong, M. & Dedon, P.C. Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide. Chem. Res. Toxicol. 19, 50–57 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dizdaroglu, M., Schulte-Frohlinde, D. & von Sonntag, C. Radiation chemistry of DNA, II. Strand breaks and sugar release by gamma-irradiation of DNA in aqueous solution. The effect of oxygen. Z. Naturforsch. [C] 30, 826–828 (1975).

    Article  CAS  Google Scholar 

  11. Dizdaroglu, M., von Sonntag, C. & Schulte-Frohlinde, D. Strand breaks and sugar release by gamma-irradiation of DNA in aqueous solution. J. Am. Chem. Soc. 97, 2277–2278 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Dizdaroglu, M. The use of capillary gas chromatography–mass spectrometry for identification of radiation-induced DNA base damage and DNA base-amino acid cross-links. J. Chromatogr. 295, 103–121 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Dizdaroglu, M. Application of capillary gas chromatography–mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes. Anal. Biochem. 144, 593–603 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Dizdaroglu, M. Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry. FEBS Lett. 315, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lyras, L., Cairns, N.J., Jenner, A., Jenner, P. & Halliwell, B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. J. Neurochem. 68, 2061–2069 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Lyras, L. et al. Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J. Neurochem. 71, 302–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Rehman, A. et al. Increased oxidative damage to all DNA bases in patients with type II diabetes mellitus. FEBS Lett. 448, 120–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Alam, Z.I., Halliwell, B. & Jenner, P. No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington's disease. J. Neurochem. 75, 840–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lim, K.S. et al. Potential artifacts in the measurement of DNA deamination. Free Radic. Biol. Med. 40, 1939–1948 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Dizdaroglu, M., Jaruga, P. & Rodriguez, H. Measurement of 8-hydroxy-2′-deoxyguanosine in DNA by high-performance liquid chromatography–mass spectrometry: comparison with measurement by gas chromatography–mass spectrometry. Nucleic Acids Res. 29, E12 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaruga, P., Rodriguez, H. & Dizdaroglu, M. Measurement of 8-hydroxy-2′-deoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Radic. Biol. Med. 31, 336–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ravanat, J.L., Duretz, B., Guiller, A., Douki, T. & Cadet, J. Isotope dilution high-performance liquid chromatography–electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J. Chromatogr. B Biomed. Sci. Appl. 715, 349–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Serrano, J., Palmeira, C.M., Wallace, K.B. & Kuehl, D.W. Determination of 8-hydroxydeoxyguanosine in biological tissue by liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1789–1791 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Siuzdak, G. The Expanding Role of Mass Spectrometry in Biotechnology (MCC Press, San Diego, CA, 2006).

  25. Dizdaroglu, M. Mechanisms of free radical damage to DNA. In DNA and Free Radicals: Techniques, Mechanisms and Applications. (eds. Aruoma, O.I. & Halliwell, B.) 3–26 (OICA International, St. Lucia, 1998).

    Google Scholar 

  26. Karakaya, A., Jaruga, P., Bohr, V.A., Grollman, A.P. & Dizdaroglu, M. Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic Acids Res. 25, 474–479 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Collins, A.R., Cadet, J., Möller, L., Poulsen, H.E. & Vina, J. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch. Biochem. Biophys. 423, 57–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Cadet, J., Douki, T. & Ravanat, J.L. Artifacts associated with the measurement of oxidized DNA bases. Environ. Health Perspect. 105, 1034–1039 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins, A., Cadet, J., Epe, B. & Gedik, C. Problems in the measurement of 8-oxoguanine in human DNA. Report of a workshop, DNA oxidation, held in Aberdeen, UK, 19–21 January, 1997. Carcinogenesis 18, 1833–1836 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. England, T.G., Jenner, A., Aruoma, O.I. & Halliwell, B. Determination of oxidative DNA base damage by gas chromatography–mass spectrometry. Effect of derivatization conditions on artifactual formation of certain base oxidation products. Free Radic. Res. 29, 321–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Jenner, A., England, T.G., Aruoma, O.I. & Halliwell, B. Measurement of oxidative DNA damage by gas chromatography–mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases. Biochem. J. 331, 365–369 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Senturker, S. & Dizdaroglu, M. The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography–mass spectrometry: how many modified bases are involved? Prepurification or not? Free Radic. Biol. Med. 27, 370–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Dizdaroglu, M. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography–mass spectrometry. Free Radic. Res. 29, 551–563 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lindahl, T. & Nyberg, B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13, 3405–3410 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Karran, P. & Lindahl, T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19, 6005–6011 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro, R. & Klein, R.S. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry 5, 2358–2362 (1966).

    Article  CAS  PubMed  Google Scholar 

  37. Lakings, D.B. & Gehrke, C.W. Analysis of base composition of RNA and DNA hydrolysates by gas–liquid chromatography. J. Chromatogr. 62, 347–367 (1971).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, V., Pacakova, V. & Smolkova, E. Gas–liquid chromatographic analysis of trimethylsilyl derivatives of pyrimidine and purine bases and nucleosides. J. Chromatogr. 119, 355–367 (1976).

    Article  CAS  PubMed  Google Scholar 

  39. Chomczynski, P., Mackey, K., Drews, R. & Wilfinger, W. DNAzol: a reagent for the rapid isolation of genomic DNA. Biotechniques 22, 550–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Hofer, T. & Möller, L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine with electrochemical detection. Chem. Res. Toxicol. 15, 426–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Pleiss, U. & Voges, R. Synthesis and Applications of Isotopically Labelled Compounds (Wiley, West Sussex, 2001).

  42. Halliwell, B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat. Res. 443, 37–52 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Academic Research Fund of the National University of Singapore for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Halliwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, K., Jenner, A. & Halliwell, B. Quantitative gas chromatography mass spectrometric analysis of 2′-deoxyinosine in tissue DNA. Nat Protoc 1, 1995–2002 (2006). https://doi.org/10.1038/nprot.2006.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.301

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing