Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides

Abstract

Aptamers are typically selected from libraries of random DNA (or RNA) sequences through systematic evolution of ligands by exponential enrichment (SELEX), which involves several rounds of alternating steps of partitioning of candidate oligonucleotides and their PCR amplification. Here we describe a protocol for non-SELEX selection of aptamers — a process that involves repetitive steps of partitioning with no amplification between them. Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), which is a highly efficient affinity method, is used for partitioning. NECEEM also facilitates monitoring of bulk affinity of enriched libraries at every step of partitioning and screening of individual clones for their affinity to the target. NECEEM allows all clones to be screened prior to sequencing, so that only clones with suitable binding parameters are sequenced. The entire protocol can be completed in 1 wk, whereas conventional SELEX protocols take several weeks even in a specialized industrial facility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Schematic representation of NECEEM-based determination of DNA affinity to the target (T).
Figure 4: Choosing an aptamer-collection window.
Figure 5
Figure 6: Gel-free CE analysis of PCR products.
Figure 7: NECEEM-based screening of clones for binding affinity after asymmetric PCR.
Figure 8: NECEEM-based affinity analysis of a chemically synthesized aptamer for h-Ras protein.

Similar content being viewed by others

References

  1. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  Google Scholar 

  2. Famulok, M., Mayer, G. & Blind, M. Nucleic acid aptamers — from selection in vitro to applications in vivo . Acc. Chem. Res. 33, 591–599 (2000).

    Article  CAS  Google Scholar 

  3. Rimmele, M. Nucleic acid aptamers as tools and drugs: recent developments. Chembiochem 4, 963–971 (2003).

    Article  CAS  Google Scholar 

  4. Jayasena, S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999).

    CAS  PubMed  Google Scholar 

  5. Lee, J.F., Stovall, G.M. & Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289 (2006).

    Article  CAS  Google Scholar 

  6. Bock, C. et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4, 609–618 (2004).

    Article  CAS  Google Scholar 

  7. Surugiu-Warnmark, I., Warnmark, A., Toresson, G., Gustafsson, J.A. & Bulow, L. Selection of DNA aptamers against rat liver X receptors. Biochem. Biophys. Res. Commun. 332, 512–517 (2005).

    Article  Google Scholar 

  8. Pestourie, C., Tavitian, B. & Duconge, F. Aptamers against extracellular targets for in vivo applications. Biochimie 87, 921–930 (2005).

    Article  CAS  Google Scholar 

  9. Davidson, E.A. & Ellington, A.D. Engineering regulatory RNAs. Trends Biotechnol. 23, 109–112 (2005).

    Article  CAS  Google Scholar 

  10. Mayer, G. & Jenne, A. Aptamers in research and drug development. BioDrugs 18, 351–359 (2004).

    Article  CAS  Google Scholar 

  11. Nutiu, R., Yu, J.M. & Li, Y. Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. Chembiochem 5, 1139–1144 (2004).

    Article  CAS  Google Scholar 

  12. Famulok, M. & Mayer, G. Intramers and aptamers: applications in protein–function analyses and potential for drug screening. Chembiochem 6, 19–26 (2005).

    Article  CAS  Google Scholar 

  13. Ulrich, H., Martins, A.H. & Pesquero, J.B. RNA and DNA aptamers in cytomics analysis. Cytometry A 59, 220–231 (2004).

    Article  Google Scholar 

  14. Stojanovic, M.N. & Kolpashchikov, D.M. Modular aptameric sensors. J. Am. Chem. Soc. 126, 9266–9270 (2004).

    Article  CAS  Google Scholar 

  15. Nimjee, S.M., Rusconi, C.P. & Sullenger, B.A. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–583 (2005).

    Article  CAS  Google Scholar 

  16. Patil, S.D., Rhodes, D.G. & Burgess, D.J. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 7, 61–77 (2005).

    Article  Google Scholar 

  17. Lee, J.F., Hesselberth, J.R., Meyers, L.A. & Ellington, A.D. Aptamer database. Nucleic Acids Res. 32, D95–D100 (2004).

    Article  CAS  Google Scholar 

  18. Ellington, A. & Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  19. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  20. O'Connell, D. et al. Calcium-dependent oligonucleotide antagonists against L-selectin. Proc. Natl. Acad. Sci. USA 93, 5883–5887 (1996).

    Article  CAS  Google Scholar 

  21. Ulrich, H. et al. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 95, 14051–14056 (1998).

    Article  CAS  Google Scholar 

  22. Burke, D.H., Scates, L., Andrews, K. & Gold, L. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J. Mol. Biol. 264, 650–666 (1996).

    Article  CAS  Google Scholar 

  23. Drolet, D.W., Jenison, R.D., Smith, D.E., Pratt, D. & Hicke, B. A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Comb. Chem. High Throughput Screen. 2, 271–278 (1999).

    CAS  PubMed  Google Scholar 

  24. Beutel, B.A. & Gold, L. In vitro evolution of intrinsically bent DNA. J. Mol. Biol. 228, 803–812 (1992).

    Article  CAS  Google Scholar 

  25. Ciesiolka, J. et al. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol. 267, 315–335 (1996).

    Article  CAS  Google Scholar 

  26. Irvine, D., Tuerk, C. & Gold, L. SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol. 222, 739–761 (1991).

    Article  CAS  Google Scholar 

  27. Vant-Hull, B., Antonio, P.-B., Davis, R.H. & Gold, L. The mathematics of SELEX against complex targets. J. Mol. Biol. 278, 579–597 (1998).

    Article  CAS  Google Scholar 

  28. Schneider, D., Gold, L. & Platt, T. Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J. 7, 201–207 (1993).

    Article  CAS  Google Scholar 

  29. Chen, H. & Gold, L. Selection of high-affinity RNA ligands to reverse transcriptase: inhibition of cDNA synthesis and RNase H activity. Biochemistry 33, 8746–8756 (1994).

    Article  CAS  Google Scholar 

  30. Tian, Y. et al. Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA 1, 317–326 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Petrov, A., Okhonin, V., Berezovski, M. & Krylov, S.N. Kinetic capillary electrophoresis (KCE): a conceptual platform for kinetic homogeneous affinity methods. J. Am. Chem. Soc. 127, 17104–17110 (2005).

    Article  CAS  Google Scholar 

  32. Heegaard, N.H.H. & Robey, F.A. Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from human serum amyloid P component. Anal. Chem. 64, 2479–2482 (1992).

    Article  CAS  Google Scholar 

  33. Chu, Y.H., Avila, L.Z., Biebuyck, H.A. & Whitesides, G.M. Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins. J. Med. Chem. 35, 2915–2917 (1992).

    Article  CAS  Google Scholar 

  34. Mendonsa, S.D. & Bowser, M.T. In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126, 20–21 (2004).

    Article  CAS  Google Scholar 

  35. Mosing, R.K., Mendonsa, S.D. & Bowser, M.T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107–6112 (2005).

    Article  CAS  Google Scholar 

  36. Berezovski, M. et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127, 3165–3171 (2005).

    Article  CAS  Google Scholar 

  37. Drabovich, A.P., Berezovski, M., Okhonin, V. & Krylov, S.N. Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal. Chem. 78, 3171–3178 (2006).

    Article  CAS  Google Scholar 

  38. Berezovski, M., Musheev, M., Drabovich, A. & Krylov, S.N. Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128, 1410–1411 (2006).

    Article  CAS  Google Scholar 

  39. Drabovich, A., Berezovski, M. & Krylov, S.N. Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J. Am. Chem. Soc. 127, 11224–11225 (2005).

    Article  CAS  Google Scholar 

  40. Berezovski, M. & Krylov, S.N. Nonequilibrium capillary electrophoresis of equilibrium mixtures — a single experiment reveals equilibrium and kinetic parameters of protein–DNA interactions. J. Am. Chem. Soc. 124, 13764–13765 (2002).

    Article  Google Scholar 

  41. Berezovski, M. & Krylov, S.N. Thermochemistry of protein–DNA interaction studied with temperature-controlled nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal. Chem. 77, 1526–1529 (2005).

    Article  CAS  Google Scholar 

  42. Thiel, K. Oligo oligarchy — the surprisingly small world of aptamers. Nat. Biotechnol. 22, 649–651 (2004).

    Article  CAS  Google Scholar 

  43. Kanna, M.W., Rozenman, M.M., Sakurai, K., Snyder, T.M. & Liu, D.R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431, 545–549 (2004).

    Article  Google Scholar 

  44. Garner, Z.J. et al. DNA-templated synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  Google Scholar 

  45. Takahashi, T.T., Austin, R.J. & Roberts, R.W. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem. Sci. 28, 159–165 (2003).

    Article  CAS  Google Scholar 

  46. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

    Article  CAS  Google Scholar 

  47. Musheev, M.U. & Krylov, S.N. Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Anal. Chim. Acta 564, 91–96 (2006).

    Article  CAS  Google Scholar 

  48. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5471 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N Krylov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezovski, M., Musheev, M., Drabovich, A. et al. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc 1, 1359–1369 (2006). https://doi.org/10.1038/nprot.2006.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.200

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing