Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Staining protocol for organotypic hippocampal slice cultures


This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6–9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a time-lapse imaging and immunohistochemistry experiment.

Similar content being viewed by others


  1. Conchello, J.A. & Lichtman, J.W. Optical sectioning microscopy. Nat. Meth. 2, 920–931 (2005).

    Article  CAS  Google Scholar 

  2. Yuste, R. Fluorescence microscopy today. Nat. Meth. 2, 902–904 (2005).

    Article  CAS  Google Scholar 

  3. Gahwiler, B.H. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Meth. 4, 329–342 (1981).

    Article  CAS  Google Scholar 

  4. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Meth. 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  5. Gahwiler, B.H. et al. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  CAS  Google Scholar 

  6. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

  7. Galimberti, I. et al. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron 50, 749–763 (2006).

    Article  CAS  Google Scholar 

  8. Henze, D.A., Urban, N.N. & Barrionuevo, G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407–427 (2000).

    Article  CAS  Google Scholar 

  9. De Simoni, A., Griesinger, C.B. & Edwards, F.A. Development of rat CA1 neurons in acute versus organotypic slices: role of experience in synaptic morphology and activity. J. Physiol. 550, 135–147 (2003).

    Article  CAS  Google Scholar 

  10. Caroni, P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Meth. 71, 3–9 (1997).

    Article  CAS  Google Scholar 

  11. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  12. Benediktsson, A.M., Schachtele, S.J., Green, S.H. & Dailey, M.E. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J. Neurosci. Meth. 141, 41–53 (2005).

    Article  Google Scholar 

  13. Lo, D.C., McAllister, A.K. & Katz, L.C. Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13, 1263–1268 (1994).

    Article  CAS  Google Scholar 

  14. Ehrengruber, M.U. et al. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 96, 7041–7046 (1999).

    Article  CAS  Google Scholar 

  15. Miyaguchi, K., Maeda, Y., Kojima, T., Setoguchi, Y. & Mori, N. Neuron-targeted gene transfer by adenovirus carrying neural-restrictive silencer element. Neuroreport 10, 2349–2353 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pico Caroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogolla, N., Galimberti, I., DePaola, V. et al. Staining protocol for organotypic hippocampal slice cultures. Nat Protoc 1, 2452–2456 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing